[序列化]avro&Thrift&protocolbuffer--几种序列化之间的比较


Hadoop 生态系统 - 哥不是小萝莉 - 博客园
http://www.cnblogs.com/smartloli/p/5640587.html
Avro 是一个基于二进制数据传输高性能的中间件。在 Hadoop 的其它项目中,例如 HBase,Hive 的 Client 端与服务端的数据传输也采用了这个工具。Avro 是一个数据序列化的系统,它可以将数据结构或对象转化成便于存储或传输的格式。Avro 设计之初就用来支持数据密集型应用,适合于远程或本地大规模数据的存储和交换。拥有一下特点:

丰富的数据结构类型
快速可压缩的二进制数据形式,对数据二进制序列化后可以节约数据存储空间和网络传输带宽
存储持久数据的文件容器
可以实现远程过程调用 RPC
简单的动态语言结合功能


Avro简介 - 技术博客 - ITeye技术网站
http://elf8848.iteye.com/blog/2083166
Avro和动态语言结合后,读/写数据文件和使用RPC协议都不需要生成代码,而代码生成作为一种可选的优化只需要在静态类型语言中实现。

Avro依赖于模式(Schema)。通过模式定义各种数据结构,只有确定了模式才能对数据进行解释,所以在数据的序列化和反序列化之前,必须先确定模式的结构。正是模式的引入,使得数据具有了自描述的功能,同时能够实现【动态加载】,另外与其他的数据序列化系统如Thrift相比,数据之间不存在其他的任何标识,有利于提高数据处理的效率。

2、 序列化/反序列化
Avro指定两种数据序列化编码方式:binary encoding 和Json encoding。使用二进制编码会高效序列化,并且序列化后得到的结果会比较小;而JSON一般用于调试系统或是基于WEB的应用。


用Hadoop AVRO进行大量小文件的处理 - 坐禅小和尚的专栏 - 博客频道 - CSDN.NET
http://blog.csdn.net/zuochanxiaoheshang/article/details/9123273


在Hive中使用Avro - 茄子_2008 - 博客园
http://www.cnblogs.com/xd502djj/p/4089644.html


大数据开放平台搭建,难点何在?
http://www.infoq.com/cn/articles/build-big-data-open-platform/
了解Avro可以看官网的Introduction。Avro经常会被跟Thrift和Protobuf这两个序列化系统做比较。因为Avro本身也是一个序列化系统。那么我们就要提出一个问题,在Thrift和Protobuf已经很成熟的这种基础上,为什么要选择Avro?在08年,10年左右,我关注这个项目,后来发现所有的代码的提交修改记录,全是Doug Cutting,里面有90%的工作都是Doug Cutting本人去做的。Doug Cutting早期是Lucene的项目的创始人,也是Hadoop的创始人,一手把Hadoop开源项目带起来,甚至都是他亲身去开发的。他花费那么多精力去搞Avro,必有其独到之处。

Avro开发中代码生成是可选的,这是一个跟其他系统,就是跟Thrift和Protobuf有很大区分的一个特性。另外Avro支持通用数据读取,不依赖于代码生成。【有了这两个特性,Avro就更能适应大数据变化的特性】。Doug Cutting当时是在Thrift和Protobuf很成熟的基础上开始着手建立Avro的,是非常有想法的。


几种序列化之间的比较Thrift&protocolbuffer&avro - 分布式架构、大数据、机器学习、搜索、推荐、广告 - 博客频道 - CSDN.NET
http://blog.csdn.net/yangbutao/article/details/8332505


RPC综述 - PB, Thrift, Avro - fxjwind - 博客园
http://www.cnblogs.com/fxjwind/archive/2013/05/16/3082219.html
当然当大数据时代来临的时候, 大家发现基于XML, 甚至Json的文本协议的方案的传输效率很成问题 所以Google和Facebook, 又开始研究基于二进制的RPC方案, 于是产生PB, Thrift, Avro, 其实本质和理论上也是来源于corba

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 196,442评论 5 462
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 82,604评论 2 373
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 143,576评论 0 325
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,652评论 1 267
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,495评论 5 358
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,370评论 1 274
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,792评论 3 387
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,435评论 0 255
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,735评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,777评论 2 314
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,553评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,399评论 3 315
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,806评论 3 300
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,038评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,330评论 1 253
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,766评论 2 342
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,964评论 2 337

推荐阅读更多精彩内容