Flink 中的 API
Flink 为流式/批式处理应用程序的开发提供了不同级别的抽象
- 最顶层抽象是 SQL,这层抽象在语义和程序表达式上都类似于 Table API,但是其程序实现都是 SQL 查询表达式。SQL 抽象与 Table API 抽象之间的关联是非常紧密的,并且 SQL 查询语句可以在 Table API 中定义的表上执行。
- 第三层抽象是 Table API,Table API 是以表(Table)为中心的声明式编程(DSL)API
- 第二层抽象是 Core APIs,包含 DataStream API(应用于有界/无界数据流场景)和 DataSet API(应用于有界数据集场景)两部分
- 最底层,Flink API 最底层的抽象为有状态实时流处理。其抽象实现是 Process Function,并且 Process Function 被 Flink 框架集成到了 DataStream API 中来为我们使用
Flink DataStream API 编程
Flink 中的 DataStream 程序是对数据流(例如过滤、更新状态、定义窗口、聚合)进行转换的常规程序。数据流的起始是从各种源(例如消息队列、套接字流、文件)创建的。结果通过 sink 返回,例如可以将数据写入文件或标准输出(例如命令行终端)。Flink 程序可以在各种上下文中运行,可以独立运行,也可以嵌入到其它程序中。任务执行可以运行在本地 JVM 中,也可以运行在多台机器的集群上。
DataStream 是什么?
DataStream API 得名于特殊的 DataStream 类,该类用于表示 Flink 程序中的数据集合。你可以通过在 Flink 程序中添加 source 创建一个初始的 DataStream。然后,你可以基于 DataStream 派生新的流,并使用 map、filter 等 API 方法把 DataStream 和派生的流连接在一起。
(感觉比较偏开发,先跳过)
Table API & SQL
Apache Flink 有两种关系型 API 来做流批统一处理:Table API 和 SQL。Table API 是用于 Scala 和 Java 语言的查询API,它可以用一种非常直观的方式来组合使用选取、过滤、join 等关系型算子。Flink SQL 是基于 Apache Calcite 来实现的标准 SQL。无论输入是连续的(流式)还是有界的(批处理),在两个接口中指定的查询都具有相同的语义,并指定相同的结果。
概念与通用API
Table API 和 SQL 集成在同一套 API 中。 这套 API 的核心概念是Table,用作查询的输入和输出。 本文介绍 Table API 和 SQL 查询程序的通用结构、如何注册 Table 、如何查询 Table 以及如何输出 Table 。
1、在Catalog中创建表
Table 可以是虚拟的(视图 VIEWS)也可以是常规的(表 TABLES)。视图 VIEWS可以从已经存在的Table中创建,一般是 Table API 或者 SQL 的查询结果。 表TABLES描述的是外部数据,例如文件、数据库表或者消息队列。
临时表(Temporary Table)和永久表(Permanent Table)
表可以是临时的,并与单个 Flink 会话(session)的生命周期相关,也可以是永久的,并且在多个 Flink 会话和群集(cluster)中可见。
永久表需要 catalog(例如 Hive Metastore)以维护表的元数据。一旦永久表被创建,它将对任何连接到 catalog 的 Flink 会话可见且持续存在,直至被明确删除。
创建表
可以通过 connector 声明。Connector 描述了存储表数据的外部系统。存储系统例如 Apache Kafka 或者常规的文件系统都可以通过这种方式来声明
CREATE [TEMPORARY] TABLE MyTable (...) WITH (...)
扩展表标识符
表总是通过三元标识符注册,包括 catalog 名、数据库名和表名。
用户可以指定一个 catalog 和数据库作为 “当前catalog” 和"当前数据库"。有了这些,那么刚刚提到的三元标识符的前两个部分就可以被省略了。如果前两部分的标识符没有指定, 那么会使用当前的 catalog 和当前数据库。
2、查询表
Table API(不常用,跳过)
Table API 是关于 Scala 和 Java 的集成语言式查询 API。与 SQL 相反,Table API 的查询不是由字符串指定,而是在宿主语言中逐步构建。
SQL
文档 SQL 描述了Flink对流处理和批处理表的SQL支持
3、输出表
Table 通过写入 TableSink 输出。TableSink 是一个通用接口,用于支持多种文件格式(如 CSV、Apache Parquet、Apache Avro)、存储系统(如 JDBC、Apache HBase、Apache Cassandra、Elasticsearch)或消息队列系统(如 Apache Kafka、RabbitMQ)。
批处理 Table 只能写入 BatchTableSink,而流处理 Table 需要指定写入 AppendStreamTableSink,RetractStreamTableSink 或者 UpsertStreamTableSink。
更多关于可用 Sink 的信息以及如何自定义 DynamicTableSink在链接User-defined Sources & Sinks
4、解释表
Table API 提供了一种机制来解释计算 Table 的逻辑和优化查询计划。 这是通过 Table.explain() 方法或者 StatementSet.explain() 方法来完成的。Table.explain() 返回一个 Table 的计划。StatementSet.explain() 返回多 sink 计划的结果。它返回一个描述三种计划的字符串:
- 关系查询的抽象语法树(the Abstract Syntax Tree),即未优化的逻辑查询计划,
- 优化的逻辑查询计划
- 物理执行计划。
(提交flink的sql代码的时候需要先检查,检查输出的结果如下)
== Abstract Syntax Tree ==
LogicalUnion(all=[true])
:- LogicalFilter(condition=[LIKE($1, _UTF-16LE'F%')])
: +- LogicalTableScan(table=[[Unregistered_DataStream_1]])
+- LogicalTableScan(table=[[Unregistered_DataStream_2]])
== Optimized Physical Plan ==
Union(all=[true], union=[count, word])
:- Calc(select=[count, word], where=[LIKE(word, _UTF-16LE'F%')])
: +- DataStreamScan(table=[[Unregistered_DataStream_1]], fields=[count, word])
+- DataStreamScan(table=[[Unregistered_DataStream_2]], fields=[count, word])
== Optimized Execution Plan ==
Union(all=[true], union=[count, word])
:- Calc(select=[count, word], where=[LIKE(word, _UTF-16LE'F%')])
: +- DataStreamScan(table=[[Unregistered_DataStream_1]], fields=[count, word])
+- DataStreamScan(table=[[Unregistered_DataStream_2]], fields=[count, word])