《微服务设计》读书笔记(八)

微服务的监控的原则:监控小的服务,然后聚合起来看整体

1. 单一服务,单一服务器

1) 监控主机的CPU、内存等信息。可以使用Nagios或者New Relic

2) 查看服务器本身的日志,何时何地发生了什么事情

3) 监控应用程序本身,最低限度是监控服务的响应时间

2. 单一服务,多个服务器

1) 既要查看所有主机的数据,还要查看单个主机的数据。换句话说,即要数据聚合起来,又想深入分析每台主机。可以使用Nagios

2) 查看服务器的日志,需要用到分布式日志收集和分析工具,比如ELK。

3) 在负载均衡器里监控响应时间,另外,对负载均衡器本身也要监控,比如它的行为是否正常等。

4) 在负载均衡器里监控服务的健康状况

3. 多个服务,多个服务器

从日志到应用程序指标,集中收集和聚合尽可能多的数据

4. 多个服务的指标跟踪

秘诀:收集系统指标足够长的时间,直到清晰的模式浮现

1) 能够方便从新的主机收集指标

2) 能够看到整个系统聚合后的指标(例如,平均CPU负载)

3) 给定的一些服务实例聚合后的指标

4) 单个服务实例的指标

Graphite可以很容易实现上述要求:

1) 提供一个非常简单的API,允许实时发送指标数据给它

2) 通过查看这些指标生成的图标和其他展示方式来了解当前的情况

3) 通过有效的配置,可以减少旧指标的精度,以确保容量不会太大。例如:最近十分钟,每隔10秒记录一次主机CPU的指标;过去的一天,以分钟为单位对数据进行聚合;过去的几年,以30分钟为单位进行聚合

4) 可以跨样本做聚合,或者深入到某个部分,这样就可以查看整个系统、一组服务或者单独实例的响应时间。

了解趋势也可以帮组我们做容量规划,确保恰好有足够的基础设施来满足需求。

5. 服务指标

1) 公开服务的基本指标(系统指标),如响应时间和错误率等

2) 公开服务的应用相关的指标(应用程序级指标),如过往订单的次数,过去一天赚的钱数

很多平台都存在一些库来帮助服务发送指标到一个标准系统。Codahale的Metrics库,运作在JVM上,可以计数、计时或计量,支持带时间限制的指标,还可以把数据发送到Graphite 和其它汇总报告系统中。

6. 语义监控

使用合成事务来确保系统行为在语义上的正确性。

语义监控比使用低层次指标的告警更能表明系统的问题,然而语义监控也并不能取代低层次的监控,那些细节有助于我们了解什么语义监控会报告问题。

实现语义监控:服务/系统的端到端测试都是实现语义监控所需的。另外,我们的系统也已经开放了测试和查看结果所需要的钩子(hook)

7. 关联标识

一个服务调用最终会触发多个下游的服务调用,更为复杂的初始请求有可能生成一个下游的调用链,并且以异步的方式处理触发的事件。如何跟踪?

一个非常有用的方法是使用关联标识(ID):在触发第一个调用时,生成一个GUID,然后把它传递给所有的后续调用。类似日志级别和日期,我们也可以把关联标识以结构化的方式写入日志。使用合适的日志聚合工具,就能够对事件在系统中触发的所用调用进行跟踪。

建议:创建一个内部客户端库来标准化这样的工作,并确保这个库是轻量的并且不依赖提供的任何特定服务。

8. 级联

监控系统之间的集成点非常关键

1) 每个服务的实例都应该追踪和显示其下游服务的健康状态,从数据库到其它合作服务。

2) 了解下游服务调用的响应时间,并检测是否有错误

3) 汇总这些信息,得到一个整合的画面

建议:使用库实现一个断路器网络调用,以更加优雅地处理级联故障和功能降级

9. 标准化

监控这个领域的标准化至关重要:服务之间的多个接口,可以用很多不同的方式合作来提供功能,需要以全局的视角来规划。

1) 标准格式来记录日志

2) 把所有的指标放到一个地方

3) 为度量提供一个标准名称的列表

4) 使用工具在标准化方面提供帮助

10. 考虑受众

监控收集的数据会触发一些事件,有些数据会触发支持团队立即采取行动。

需要考虑一下因素:

1) 现在需要知道什么

2) 之后想要什么

3) 如何消费数据

11. 未来:指标聚合

同一化各种指标聚合方式,例如,以同样的方式处理运营指标和业务指标。从专门只做一件事的系统转向通用事件处理系统。不再为不同类型的指标提供专门的工具链,而是提供伸缩性很好的更为通用的事件路由系统。

Riemann:事件服务器,允许高级的聚合和事件路由,该工具可以作为上述解决方案的一部分

Suro:Netflix的数据流水线,明确可以处理两种数据:用户行为的相关指标和更多的运营数据。然后这些数据可以被分发到不同的系统中,像Storm的实时分析、离线批处理的Hadoop或日志分析的Kibana

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,755评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,369评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,799评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,910评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,096评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,159评论 3 411
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,917评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,360评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,673评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,814评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,509评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,156评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,123评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,641评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,728评论 2 351

推荐阅读更多精彩内容