简单的数学——青鸟班的教学故事

下面是一节不完美不过感觉还可以的课堂实录,教学内容是人教版三年级上册第60页例1。

1

提前2分钟来到教室,打开课件,回头一看,有几个懂事的孩子已经把数学课本、练习本摆在桌子左上角,把文具放在前方的笔槽中,并且抱臂坐直,我笑了:“快上课了,老师在准备,洋、景馨、莺歌、诗佳已经做好了物品准备,大家还要做好心理准备啊!”

上课铃声响了,有几个打闹的男生慌慌张张地跑进教室,待他们坐好,拿出物品,我看着大家:“孩子们,你们好!”【不管是新月班,还是青鸟班,自从来到龙美小学,我都是以这句话作为课程的开启语】

“张老师,您好!”【孩子们不需要站起来,但是眼睛要看着老师,这是一种礼貌】

“请大家看,你能根据图意创编一道乘法应用题吗?”

短暂沉默之后,永铭站起来回答:“一盒蜡笔90元,3盒多少元?”【这个价钱太夸张了,不过似乎不用我来纠正,下面举手的同学有很多,关键是这并不是这节课的重点,纠正就意味着聚焦,在开课之初聚集这样一个问题,显然是得不偿失的,还有一点,既然是创编乘法应用题,就要放得开,永铭创编了,并且真的是乘法应用题,这就很好了】

少恒继续创编:“一盒蜡笔有12支,3盒一共多少支?”,这个问题出现后,举起的小手大部分都放下了,看来,大家的想法是一致的。

我引导着全班孩子一起数一盒蜡笔的支数【这个过程是要有的,因为教学是要面向全体的,像永铭一样的孩子也需要经历关注一盒蜡笔支数的过程】,然后出示完整的应用题,请同学们齐读一遍。

2

“你会解答吗?请拿出练习本,独立完成。”

孩子们很快便完成了,我提醒孩子们:“你能给别人讲清楚你的计算过程吗?做完的可以和身边的同学交流一下。”

在巡视检查的过程中,我发现有个别学生写成“12×3=32”,问其原因,孩子说的振振有词:“1×3=3,所以是32”。

【这样做是错的,但是设身处地想一想这个孩子怎么会有这样的认识呢?根源在哪里?昨天的口算乘法没有建构好会是一个很大的原因,可是,口算乘法也做了足够的练习,为什么现在好像全忘了?

现在想想,在加法中,每个数都是加一次就结束了,而在乘法中,是需要用一位数依次乘多位数的每一位数的,也就是说,做乘法时,这个孩子还在用加法的思维来做。

这个如何是好?所谓解铃还须系铃人,既然这个孩子还在用加法思维来做,那么我也用加法来做,给你做个不一样的答案,这样这个孩子一定是理解的,并且是信服的】

2

该全班交流了,我一反常态地先站出来讲题:“大家请看,从一开始,老师就让大家提出乘法应用题,现在如果不用乘法,用加法该如何解答?”

孩子们异口同声地回答:“12+12+12”,有几个孩子还报出了结果。我顺势列出连加竖式:“用加法竖式怎样算?”

一个孩子站起来说:“2+2=4,4+2=6,也可以说二三得六。”【现在想想,我应该把这个问题抛给那个12×3=32的孩子,我提问的针对性意识还是没有形成自动化】

“二三得六是怎么得到的?”

“3个2相加,就是二三得六。”

“是的,3个2相加,用乘法做是2×3=6,用到的口诀就是二三得六。”我把加法到乘法,再到乘法口诀这个过程梳理清楚。【2+2+2=6到2×3=6,再到二三得六,中间的乘法算式这关键一步,发言学生偏偏省略了,但是就本节课而言,这个是需要聚焦的,因为乘法竖式第一步就是2×3=6】

这个孩子接着说:“1+1+1=3,也可以是1×3=3,用到的乘法口诀是一三得三”。

接下来,两位板演同学都讲了自己的计算过程,第一位同学:“2×3=6,1×3=3,所以等于36”,另一个同学:“把12分成10和2,先算10×3=30,再算2×3=6,最后30+6=36.”

3

我引导学生看课件中“用小棒图表示12×3的过程”,并结合小棒图来引入乘法竖式,先出示能显示两次相乘过程的竖式,强调十位上的1×3=3,就是10×3=30,再引入简便写法。

完成“做一做”,准确率应该是100%,聚焦“你能说说乘的顺序吗?”

馨:“从个位乘起”,

“然后呢?”

“再乘十位上的数,再乘百位上的数”

“如果千位,万位上也有数呢?”

“再乘千位上的数,再乘万位上的数。”

这时,有的孩子的眼睛开始放光,按捺不住的永旺抢着说:“还可以乘亿位、兆位上的数。”【亿位是大部分孩子还没有接触的数位,只是在前一段时间的学习中,这个爱思考的永旺下课后拉着我问比万位更大的数位,我坦诚相告,没想到孩子在这里用到了,真好】,其他孩子听得很认真也很认同。

我有点站不住了:“从十位乘起不可以吗?我看这几个题都可以啊。”

问题一抛出,立刻赢得了部分同学的认同:“对,从十位乘也可以”,但是,马上有几个孩子表示反对:“如果进位了怎么办?你十位写好了,难道一会儿再擦掉重写吗,那多麻烦,还是从个位乘好。”

我接过学生抛过来的问题:“是啊,在加法中,我们规定从个位加起,就是为了避免这种麻烦,那么乘法中,会不会出现进位呢?”

“会”

“你能举个例子吗?”

“18×3”

“该怎样算?”

就在大家思考之时,爱拆分18的宗翼已经高高举起了手,宗翼落落大方地讲:“大家请看,18可以分成10和8,10×3=30,8×3=24,30+24=54,你们同意我的算法吗?”

“同意”,响亮地声音中传递出同学们地赞赏。

我继续问:“18×3,在写竖式时,能先算十位上地1×3吗?”

“不能,那样就麻烦了,因为一会儿还有进位。”

当一切水到渠成时,我出示乘顺序:“从个位起,用一位数依次乘多位数地每一位数。”同学们读了一遍后,深表赞同,我又请同学们解释了“依次”地含义,很多同学如获至宝一般自动抄写在课本上。

4

限时15分钟,做课本第63页第1、2题,提出要求,拉横线要用尺子,横线长短要合适,做一题空一行,要大方美观!

孩子们真棒,大约12分钟大部分孩子都已经做完,有的让我批改,有的让同学批改,下课了,瑞还在写,瑞的做题速度是没有问题的,问题是他没有养成良好的学习习惯,其他同学都写了几题了,我才发现他坐在那里东张西望,一问,没有本子,我很受打击,难道说这个孩子一直就这样游离于课堂之外,我怎么就没有早一刻发现呢……

瑞现在还在写,这一点让我感到欣慰,孩子,慢慢来。

5

周末数学作业中有一项:请孩子们先用小棒摆出18,然后再用小棒摆出18×3,然后说一说你是怎样摆的,一共用了多少根小棒?

我发现,放手之后,孩子们的摆法令我欣喜,很多孩子是这样摆的:把18根小棒分成两部分:1捆和8根,然后3个1捆是3捆,也就是30根,3个8根是24根,最后30+24=54,所以18×3=54。

轩说:“这是18的1倍,这是18的2倍,这是18的3倍,轩为了让老师看清楚,把8根小棒摆成一排粘在一起,真好!计算呢?先用10×3=30,再用8×3=24,最后用30+24=54”。【轩摆小棒干脆利索,说道理简练到位,佩服!】

而子涵的方法让我惊讶:“这是20根小棒,抽出2根,就变成了18根;这也是20根小棒,抽出2根,也变成了18根;同样道理,这也是18根小棒。这里原来的3个20就是60,抽出来的3个2就是6,60-6就等于3×18,60-6=54,所以3×18=54。”【子涵的思路很特别,摆的过程很清晰,说的过程很精彩,“同样道理”这个词语用的恰到好处,60-6=18×3看似复杂的问题在直观的演示下变得生动活泼,这是在创造数学啊,其实布置作业时,我是没有想到这种方法的,真棒!】

6

这节数学课简单吗?

重要的不是我们的感受,而是孩子们的感受,学习过程中,学生是学习的起点,同样,学生也是学习的终点。

写于2018年11月25日星期日

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容

  • 第一章数和数的运算 一概念 (一)整数 1整数的意义 自然数和0都是整数。 2自然数 我们在数物体的时候,用来表示...
    meychang阅读 2,592评论 0 5
  • 标签: os path python 前言: 今天研究公司代码,对这么一段代码不怎么理解 于是乎专程研究下pyth...
    金鳞小砸阅读 308评论 0 0
  • 德芬老师说,心想事成是每个人与生俱来的能力 那么为什么心想事成,没有在每一个人的身上应验呢? 我本人觉得有两个原因...
    笑Eva阅读 450评论 0 1
  • 尼尔森十大交互原则 以CSDN网页为例,解释尼尔森十大交互原则。 一、状态可见原则 用户在网页上的任何操作,不论是...
    Lzer0阅读 9,455评论 0 17
  • 屋里凉,窗外冻,没有一处不寒冷。 北方是四季分明,南方是冬夏交替,我在南方生活了21年,很少见雪,很少给自己堆个雪...
    无言漫阅读 219评论 1 1