Python干货:panda特殊索引器——过滤数据

迄今为止最常见从DataFrame获取元素、行和列的数据索引方式:

Dataframe.[];此函数也称为索引运算符。

Dataframe.loc[] :此函数用于标签。

Dataframe.iloc[] :此函数用于基于位置或整数的

Dataframe.ix[] :此函数用于标号和基于整数的函数。

它们统称为索引器。而布尔索引是一种索引类型,它使用DataFrame中数据的实际值。

它们统称为索引器。而布尔索引是一种索引类型,它使用DataFrame中数据的实际值。

根据DataFrame中数据的实际值而不是它们的行/列标签或整数位置来选择数据子集。

在布尔索引中使用布尔向量过滤数据,通过四种方式过滤数据:

使用布尔索引访问DataFrame

将布尔掩码应用于数据帧

基于列值的掩蔽数据

基于索引值的掩蔽数据

使用布尔索引访问DataFrame:

创建一个dataframe,其中的dataframe索引包含一个布尔值。即“True”或“false”。例如

# importing pandas as pdimport pandas as pd​# dictionary of listsdict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],        'degree': ["MBA", "BCA", "M.Tech", "MBA"],        'score':[90, 40, 80, 98]}   df = pd.DataFrame(dict, index = [True, False, True, False])   print(df)

产出:

借助布尔索引访问数据,使用以下三个函数访问数据文件.loc[], .iloc[], .ix[]

使用布尔索引访问Dataframe.loc[]

为了访问具有布尔索引的数据,使用.loc[],我们只需将布尔值(真或假)传递给.loc[]功能。

# importing pandas as pdimport pandas as pd   # dictionary of listsdict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],        'degree': ["MBA", "BCA", "M.Tech", "MBA"],        'score':[90, 40, 80, 98]}  # creating a dataframe with boolean index df = pd.DataFrame(dict, index = [True, False, True, False])  # accessing a dataframe using .loc[] function print(df.loc[True])

产出:

使用布尔索引访问Dataframe.iloc[]

为了访问数据文件,请使用.iloc[],我们必须在iloc[]功能但iloc[]函数只接受整数作为参数,因此它将引发一个错误,因此我们只能在将整数传递给iloc[]功能代码1:

# importing pandas as pdimport pandas as pd   # dictionary of listsdict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],        'degree': ["MBA", "BCA", "M.Tech", "MBA"],        'score':[90, 40, 80, 98]}  # creating a dataframe with boolean index  df = pd.DataFrame(dict, index = [True, False, True, False])  # accessing a dataframe using .iloc[] function print(df.iloc[True])

产出:

TypeError

代码2:

# importing pandas as pdimport pandas as pd   # dictionary of listsdict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],        'degree': ["MBA", "BCA", "M.Tech", "MBA"],        'score':[90, 40, 80, 98]}  # creating a dataframe with boolean index  df = pd.DataFrame(dict, index = [True, False, True, False])     # accessing a dataframe using .iloc[] functionprint(df.iloc[1])

产出:

使用布尔索引访问Dataframe.ix[]

为了访问数据文件,请使用.ix[],我们必须将布尔值(真或假)和整数值传递给.ix[]因为我们知道.ix[]函数是.loc[]和.iloc[]功能。代码1:

# importing pandas as pdimport pandas as pd   # dictionary of listsdict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],        'degree': ["MBA", "BCA", "M.Tech", "MBA"],        'score':[90, 40, 80, 98]}  # creating a dataframe with boolean indexdf = pd.DataFrame(dict, index = [True, False, True, False])     # accessing a dataframe using .ix[] functionprint(df.ix[True])

产出:

代码2:

# importing pandas as pdimport pandas as pd   # dictionary of listsdict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],        'degree': ["MBA", "BCA", "M.Tech", "MBA"],        'score':[90, 40, 80, 98]}  # creating a dataframe with boolean index df = pd.DataFrame(dict, index = [True, False, True, False])     # accessing a dataframe using .ix[] functionprint(df.ix[1])

产出:

将布尔掩码应用于dataframe:

应用一个布尔掩码,它将只打印传递布尔值True的数据,使用__getitems__或[]访问。

用dataframe中包含的长度相同的真假列表来应用布尔掩码,

代码1:

# importing pandas as pdimport pandas as pd   # dictionary of listsdict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],        'degree': ["MBA", "BCA", "M.Tech", "MBA"],        'score':[90, 40, 80, 98]}   df = pd.DataFrame(dict, index = [0, 1, 2, 3])  print(df[[True, False, True, False]])

产出:

代码2:

# importing pandas packageimport pandas as pd   # making data frame from csv filedata = pd.read_csv("nba1.1.csv")   df = pd.DataFrame(data, index = [0, 1, 2, 3, 4, 5, 6,                                 7, 8, 9, 10, 11, 12])     df[[True, False, True, False, True,    False, True, False, True, False,                True, False, True]]

产出:

基于列值的掩蔽数据:在dataframe中,使用不同的运算符(如==, >, <, <=, >=)根据列值对数据进行过滤。

代码1:

# importing pandas as pdimport pandas as pd   # dictionary of listsdict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],        'degree': ["BCA", "BCA", "M.Tech", "BCA"],        'score':[90, 40, 80, 98]}  # creating a dataframe df = pd.DataFrame(dict)   # using a comparison operator for filtering of dataprint(df['degree'] == 'BCA')

产出:

代码2:

# importing pandas packageimport pandas as pd   # making data frame from csv filedata = pd.read_csv("nba.csv", index_col ="Name")   # using greater than operator for filtering of dataprint(data['Age'] > 25)

产出:

打开UC浏览器 查看更多精彩图片

基于索引值的掩蔽数据:在dataframe中,使用不同的运算符创建基于索引值的掩码 ==, >, <

代码1:

# importing pandas as pdimport pandas as pd   # dictionary of listsdict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],        'degree': ["BCA", "BCA", "M.Tech", "BCA"],        'score':[90, 40, 80, 98]}     df = pd.DataFrame(dict, index = [0, 1, 2, 3])  mask = df.index == 0  print(df[mask])

产出:

代码2:

# importing pandas packageimport pandas as pd   # making data frame from csv filedata = pd.read_csv("nba1.1.csv")  # giving a index to a dataframedf = pd.DataFrame(data, index = [0, 1, 2, 3, 4, 5, 6,                                 7, 8, 9, 10, 11, 12])  # filtering data on index valuemask = df.index > 7   df[mask]

产出:

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容