产品经理数学课(2)

关键词:对称加密算法,RSA算法,素数(质数),素数分布,数论。


历史

1976年以前,所有的加密方法都是同一种模式:

(1)甲方选择某一种加密规则,对信息进行加密;

(2)乙方使用同一种规则,对信息进行解密。

由于加密和解密使用同样规则(简称"密钥"),这被称为“对称加密算法”(Symmetric-key algorithm)

这种加密模式有一个最大弱点:甲方必须把加密规则告诉乙方,否则无法解密。保存和传递密钥,就成了最头疼的问题。


1976年,两位美国计算机学家Whitfield Diffie 和Martin Hellman,提出了一种崭新构思,可以在不直接传递密钥的情况下,完成解密。这被称为"Diffie-Hellman密钥交换算法"。意味着加密和解密可以使用不同的规则,只要这两种规则之间存在某种对应关系即可,这样就避免了直接传递密钥。

这种新的加密模式被称为"非对称加密算法"。

(1)乙方生成两把密钥(公钥和私钥)。公钥是公开的,任何人都可以获得,私钥则是保密的。

(2)甲方获取乙方的公钥,然后用它对信息加密。

(3)乙方得到加密后的信息,用私钥解密。

如果公钥加密的信息只有私钥解得开,那么只要私钥不泄漏,通信就是安全的。


RSA算法相关

1977年,三位数学家Rivest、Shamir 和Adleman 设计了一种算法,可以实现非对称加密。这种算法用他们三个人的名字命名,叫做RSA,RSA加密算法,是一种非对称加密算法,在公开密钥加密和电子商业活动中被广泛应用。

因数分解决定了RSA算法的可靠性,到目前为止,世界上还没有任何可靠的攻击RSA算法的方式,只有短的RSA钥匙才可能被强力方式解破。长度超过768位的密钥,还无法破解(至少没人公开宣布)。因此可以认为,1024位的RSA密钥基本安全,2048位的密钥极其安全。同时RSA算法也是素数的经典运用。

因素分解:一个整数分解成多个约数(因数),根据算术基本定理结果是唯一的。如:12=2*3*2;

素数:又称质数,在大于1的自然数中,除了1和它本身以外不再有其他因数,质数的个数是无穷的;

互质:互质是公约数只有1的两个整数,叫做互质整数。公约数只有1的两个自然数,叫做互质自然数,后者是前者的特殊情形

扩展欧几里得算法:是用来在已知a, b求解一组x,y,使它们满足贝祖等式: ax+by = gcd(a, b) =d(解一定存在,根据数论中的相关定理)。扩展欧几里德常用在求解模线性方程及方程组中。

乘法逆元:是指数学领域群G中任意一个元素a,都在G中有唯一的逆元a‘,具有性质a×a'=a'×a=e,其中e为该群的单位元。

RSA算法原理

生成公钥和私钥步骤。

1)选择相异素数P、Q,并得到乘积N ,既「N=P*Q」。

2)将P、Q各减1,再互乘,得到数值\varphi(n),既「\varphi(n)=(P-1)(Q-1)」。

3)选择整数E为密钥,使E和\varphi(n)互质,且E小于。

4)根据公式DE mod \varphi(n)=1,计算出D的值 ,作为另外一个密钥

5)通过以上步骤计算出,N,E,D3个数,N、E为公钥,N、D为私钥。


简单实例

P=3  Q=11

N=P*Q

    N=33

\varphi(n)=(P-1)(Q-1)=2*10=20

E=7(7<8)

DE mod \varphi(n)=1

D*7=1(mod 20)

D=3

公钥(33,7), 私钥(33,3)


公钥加密

C=M^E mod N

明文 :M=5

加密:C=(5^7)mod 33=14

密文 :C=14


私钥解密

M=C^D mod N

密文:C=14

解密 :M=(14^3)mod 33

M=5



参考:「百度文库」、「RSA算法详解」、「几何原本」「程序员的数学思维修炼」、「RSA算法原理阮一峰」

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,723评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,485评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,998评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,323评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,355评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,079评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,389评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,019评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,519评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,971评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,100评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,738评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,293评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,289评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,517评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,547评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,834评论 2 345

推荐阅读更多精彩内容

  • 一、准备知识 在开始介绍前,需要首先了解一下消息摘要、数字签名、数字证书的知识 1、消息摘要 - Message ...
    浪够_阅读 2,709评论 1 2
  • 姓名:于川皓 学号:16140210089 转载自:https://baike.baidu.com/item/RS...
    道无涯_cc76阅读 2,532评论 0 1
  • 原文链接:http://blog.jobbole.com/86660/ 1 前言 百度已经于近日上线了全站 HTT...
    xlhzj阅读 1,092评论 0 2
  • 密码学基本概念 密码学是研究如何隐密地传递信息的学科。在现代特别指对信息以及其传输的数学性研究,常被认为是数学和计...
    千寻与小米阅读 527评论 0 1
  • 概述 Spring Boot 最大的特点是无需 XML 配置文件,能自动扫描包路径装载并注入对象,并能做到根据 c...
    康俊1024阅读 600评论 0 0