3.5Python数据处理篇之Numpy系列(五)---numpy文件的存取

目录:

[TOC]

目录:

1.以文本形式存取

2.以任意的形式存取

3.以np自定义的形式存取

(一)以文本形式存取

1.说明:

(1)适用范围:存储一维,二维数组

(2)局限性:不能存储多维数组

2.语法解释:

(1)写文件

从数组到文件

np.savetxt(frame,array,fmt="%1.8e",delimiter=None)
frame -> 文件名,字符串
array -> 数据的来源,数组
fmt   ->写入的格式
delimiter ->分隔符

(2)读文件

从文件到数组

np.loadtxt(frame,dtype=np.float,delimiter=None)
frame -> 数据的来源,文件名,字符串
dtype -> 数据读取的格式类型
delimiter ->分隔符

3.实例(以.csv文件为例)

import numpy as np
# 生成一个数组
a = np.arange(100).reshape(5,20)
# 写入到文件
np.savetxt('a.csv',a,fmt="%2d",delimiter=',')
# 读取到数组变量
b = np.loadtxt('a.csv',dtype=np.float,delimiter=',')
print(b)

csv文件是一种常用的数据存储方式,可以用excel操作,分隔符是用逗号。

4.效果展示

01.png

(二)以任意的形式存取

1.说明:

适用范围:可以是任意种文件类型.txt .bat .csv .dot

局限性:丢失了数据的维度信息,按顺序存储数据。

2.语法解释:

(1)写文件

a.tofile(frame,sep='',format='%s')
a ->数组
frame ->文件名,字符串
sep ->分隔符,空串或默认是写入的是二进制文件
format ->写入的格式

(2)读文件

np.fromfile(frame,dtype=np.float,count=-1,sep='')
frame ->文件名,字符串
dtype ->读出的格式
count ->读出的数个数,索引
sep ->分隔符
返回值:数组

3.实例(以.bat二进制文件为例)

# 导入numpy
import numpy as np 
# 生成数组
a = np.arange(100).reshape(5,10,2)
# 写入文件
a.tofile("b_b.bat",sep=",",format="%2d")
# 读出文件
c = np.fromfile("b.dat",dtype=np.int,sep="").reshape(5,2,10)
print(c)

二进制的文件,分割符必须是空串,其优势是占用内存小

4.效果展示

(1)二进制文件:

02.png

(二)文本文件:

03.png

(三)以np自定义的形式存取

1.说明:

适用范围:任意维度的数组

局限性:必须以numpy自定义的文件格式,而且是二进制文件。

2.语法解释:

(1)写文件

np.save(fname,array)
fname -> 文件名称,以普通格式.npy和压缩格式.npz为后缀名
array ->数组

(2)读文件

np.load(fname)
fname -> 文件名,以普通格式.npy和压缩格式.npz为后缀名
返回值:存储时的数组。

3.实例:

import numpy as np
a = np.arange(10000).reshape(10,10,100)
# writer file 
np.save("01.npy",a)
np.savez("01.npz",a)
# read file
b = np.load("01.npy")
c = np.load("01.npz")
print(b)
print(c)

4.实例展示

04.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,542评论 6 504
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,822评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,912评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,449评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,500评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,370评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,193评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,074评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,505评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,722评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,841评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,569评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,168评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,783评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,918评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,962评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,781评论 2 354

推荐阅读更多精彩内容