天线是什么?最通俗易懂的科普

姓名:饶明磊

学号:19021210815

【嵌牛导读】天线,是我们生活中很常见的一种通讯设备。但是,大部分人其实对它并不了解,可能只知道它是收发信号的。本文面向零基础读者,专业或非专业人士,皆可阅读,绝对通俗易懂,干货满满。

【嵌牛鼻子】天线的形象介绍

【嵌牛提问】天线是什么?最通俗易懂的科普

【嵌牛正文】

大家好,今天我要给大家介绍的,是天线

嗯,就是这个东东:

常见的天线

话说,自从1894年老毛子科学家波波夫成功发明了天线之后,这玩意迄今已有124年的历史(数了3遍,应该没错)

波波夫和他的发明

在这漫长的历史长河之中,它对人类社会发展和进步做出了卓绝的贡献。

二战中屡立奇功的英国雷达天线

如今,不管是老百姓日常工作生活,还是科学家进行科研探索,都离不开天线君的默默奉献。

天线究竟是一根什么样的“线”,为什么会如此彻底地改变我们的生活?

其实,天线之所以牛逼,就是因为电磁波牛逼。

电磁波之所以牛逼,一个主要原因就是,它是唯一能够不依赖任何介质进行传播的“神秘力量”。即使在真空中,它也能来去自如,而且转瞬即至。

电磁波效果图

电磁波传播示意图

想要充分利用这股“神秘力量”,你就需要天线。

在无线电设备中,天线就是用来辐射接收无线电波的装置。

天线的英文名:Antenna(也有触须、直觉之意)

再通俗点,天线就是一个“转换器”——把传输线上传播的导行波,变换成在自由空间中传播的电磁波,或者进行相反的变换。

天线的作用

什么叫导行波

简单来说,导行波就是一种电线上的电磁波。

天线是怎么实现导行波和空间波之间转换的呢?

看下图:

中学物理学过,两根平行导线,有交变电流时,就会形成电磁波辐射

两根导线很近时,辐射很微弱(导线电流方向相反,产生的感应电动势几乎抵消)。

两根导线张开,辐射就会增强。

当导线的长度增大到波长的1/4时,就能形成较为显著的辐射效果(导线电流方向相同,产生的感应电动势方向相同)!

有了电场,就有了磁场,有了磁场,就有了电场,如此循环,就有了电磁场和电磁波。。。

电生磁,磁生电

导线电流方向的变化,产生了变化的电场

产生电场的这两根直导线,就叫做振子

通常两臂长度相同,所以叫对称振子

长度像下面这样的,叫半波对称振子

半波对称振子

把导线两头连起来,就变成了半波对称折合振子

半波对称折合振子

有点像刷墙的油漆刷子。

对称振子是迄今最为经典,使用最为广泛的天线。

理论还是有点枯燥啊,赶紧的,我们来结合一下实物。

真实世界中的振子,是个什么样?

Duang!就是这样——

就是这么个金属片。。。半波对称振子(非折合)

好吧,其实上面这个只是振子的一个传统形态,它还有N种变(身)态:

造型怪异的振子

懵逼了吧?如果说振子就是天线,那这哪里是天线嘛?我们现实生活中看到的天线不是这个鸟样啊?

确切地说,振子不是一个完整的天线。振子是天线的核心部件,形态会随天线的形态变化而变化。

而天线的形态,实在是太TM多了。。。多了。。。了。。。

总而言之,成百上千。。。

虽然天线的形态千奇百怪,但是根据相似度,也可以进行大致归类。

按波长分:中波天线、短波天线、超短波天线、微波天线...

按性能分:高增益天线、中增益天线...

按指向分:全向天线、定向天线、扇区天线...

按用途分:基站天线、电视天线、雷达天线、电台天线...

按结构分:线天线、面天线...

按系统类型分:单元天线、天线阵...

……

如果按照外型来分,常见的几种,如下图:

鞭状天线

抛物面天线

八木天线

PS:八木天线并不是八根木头,虽然我数学不好,但是八我还是数得来的。之所以叫八木,是因为它是二十世纪20年代日本人八木秀次和宇田太郞发明的,叫“八木宇田天线”,简称“八木天线”(可怜的宇田)。

我们通信汪最关心的,当然是——通信基站天线

基站天线,是基站天馈系统的组成部分,也是移动通信系统的重要组成部分。

基站天线一般分为室内天线室外天线

室内天线通常包括全向吸顶天线定向壁挂天线等。

我们重点说说室外的。

室外基站天线也分为全向的和定向的。定向天线再细分为定向单极化天线定向双极化天线

什么是极化?别急,我们待会再说。我们先说说全向定向

其实顾名思义,全向天线就是向四周发射和接收信号的,而定向天线,是向指定方向。

室外全向天线,是这样的:

就是一根棒子,有粗的,也有细的。

它里面的振子,是这样的:

相比全向天线,现实工作生活中,定向天线使用最为广泛

它大部分时候看上去就是一个板子,所以叫板状天线

板状天线,主要由以下部分组成:

辐射单元(振子)

反射板(底板)

功率分配网络(馈电网络)

封装防护(天线罩)

之前我们看到那些奇怪形状的振子,其实都是基站天线的振子。

大家注意到没,这些振子的角度,有一定的规律:要么是“+”,要么是“×”。

嗯,这就是前面我们提到的“极化”。

无线电波在空间传播时,其电场方向是按一定的规律而变化的,这种现象称为无线电波的极化

如果电波的电场方向垂直于地面,我们称它为垂直极化波。同理,平行于地面,就是水平极化波。另外,还有±45°的极化。

不仅如此,电场的方向还可以是螺旋旋转的,叫椭圆极化波。

双极化,就是2个天线振子在一个单元内,形成两个独立波。

采用双极化天线,可以在小区覆盖时减少天线的数量,降低天线架设的条件要求,进而减少投资,还能保证覆盖效果。总之,就是好处多多。

密集恐惧症又犯了。。。

我们继续前面全向和定向天线的话题。

为什么定向天线可以控制信号的辐射方向呢?

我们先来看个图:

这种图,叫做天线方向图

因为空间是三维立体的,所以这种从上往下的俯视,以及从前往后的正视,会更加清晰直观地观察到天线辐射强度的分布。

上图也是一对半波对称振子产生的天线方向图,有点像个平放的轮胎。

话说,天线的诸多特性中,一个很重要的能力,就是辐射距离。

怎样才能让这个天线的辐射距离更远呢?

答案就是——

拍它。。。

啪叽!

这下辐射距离不就远了嘛。。。

问题是,辐射这玩意,看不见抓不着,你想拍它,也拍不着啊。

在天线理论里,如果你想拍这一巴掌,正确的做法是——增加振子

振子越多,轮胎越扁。。。

这个造型有点像那啥啊。。。呵呵

好了,轮胎被拍成了饼,信号距离是远了,而且,它是向周围360°发散的,是个全向天线。这种天线,放在荒郊野外,是极好的。但是,在城市里,这种天线就很难玩得转了。

城市里,人群密集,建筑林立,通常需要使用定向天线,对指定范围进行信号覆盖。

城区基本上都是定向天线

于是乎,我们就需要对全向天线进行“改造”。

首先,我们要想办法把其中一侧“挤一挤”:

怎么挤呢?我们加上反射板,挡在一侧。然后,配合多个振子,进行“聚焦”。

最后,我们得到的辐射形状,是这样的:

图中,辐射强度最大的瓣称为主瓣,其余的瓣称为副瓣或旁瓣,屁股上还会有一点尾巴,叫后瓣

呃,这个造型,有点像。。。茄子?

对于这个“茄子”,你可以想一想,怎样才能最大化利用它进行信号覆盖呢?

抱着它站在马路上,肯定是不行的,障碍物太多。

站得高,看得远,我们肯定要往高处走啊。

到了高处,怎么才能往下照呢?聪明如我的你,一定想到了,很简单啊,天线本体往下倾斜不就OK啦?

是的,在安装时,直接倾斜天线,是一个办法,我们称之为“机械下倾”。

现在的天线,安装时都具备这个能力,一个机械臂,搞定。

但是,机械下倾也存在一个问题——

采用机械下倾时,天线垂直分量和水平分量的幅值是不变的,所以天线方向图严重变形 。

这肯定不行啊,影响了信号覆盖。于是,我们采用了另外一种办法,就是电调下倾,简称电下倾

简而言之,电下倾就是保持天线本体的物理角度不变,通过调整天线的振子相位,改变场强强度。

来个动图,就看明白了:

相比于机械下倾,电下倾的天线方向图变化不大,下倾度数更大,而且,前瓣和后瓣都朝下。

当然啦,在实际使用中,经常会机械下倾和电调下倾配合使用

下倾之后,就变成了这样——

在这种情况下,天线的主要辐射范围,得到了较充分的利用。

但是,还是有问题存在的:

1 主瓣和下旁瓣之间,有一个下部零深,会造成这个位置的信号盲区。通常,我们称之为“灯下黑”。

2 上旁瓣的角度较高,影响距离较远,很容易造成越区干扰,也就是说,信号会影响到别的小区。

所以,我们必须努力填补“下部零深”的空缺压制“上旁瓣”的强度

具体的办法,就是调节旁瓣的电平,采用波束赋形等手段,里面的技术细节就有点复杂了。

这里面的学问,真的很深,所以,无数的天线专家都在钻研这方面的课题,不断地研发、测试。

大家感兴趣的话,可以自行搜索相关资料。

天线测试暗室

一款优秀的天线,离不开良好的工艺,可靠的材料,还有不断的测试。

实际上,天线的知识还有很多,远不止本文所述。

总之,天线确实是一门精深的学问,远比大家想象得复杂。而且,目前也处于高速发展的阶段,还有很大的潜力可以挖掘。

尤其是即将到来的5G,天线技术革新是其中的重中之重,各大设备厂家一定会在5G天线上全力以赴,做足文章。

到时候会有什么样的天线黑科技出现?让我们拭目以待吧!

谢谢大家的阅读!

参考:https://zhuanlan.zhihu.com/p/33455997

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352