机器学习(3)——回归模型

前言:紧接上一篇文章结尾,预测值和真实值存在较大差距,接着介绍用多项式权重来提高拟合度(R2),过拟合解决办法,引出正则项L1和L2,Ridge回归和LASSO回归。

目标函数

机器学习中目标函数是指模型训练的过程中(参数求解的过程中)方向是什么。例如线性回归的方向就是让目标函数的取值越小越好,线性回归用到就是平方和损失函数,感知损失用到SVM,对数损失函数用到逻辑回归等。常见的几种目标函数:
image.png

多项式扩展

  • 当线性模型无法准确模拟数据时候,我们对数据进行扩展,现在这里在线性模型的基础上进行多项式扩展,用曲线模拟数据,以求得较好的模型。
  • 概念:将数据中的特征与特征之间进行融合,形成新的特征的一个过程,数学上来说,将低维度数据点映射到高维空间。属于特征工程的一种操作。
    对于一元线性回归模型:
    image.png

    扩展成一元多项式回归模型就是:
    image.png

    如下图模型用线性直接描述误差会很大,用多项式扩展去描述反而会变得很好
    image.png
    image.png

    我们用多项式扩展来对上一篇中的模型就行改进,引入from sklearn.preprocessing import PolynomialFeatures
    改进后的代码如下:
#-*- conding:utf-8 -*-
#准确率:print("电流预测准确率: ", lr2.score(X2_test,Y2_test))
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import PolynomialFeatures
import numpy as np
import pandas as pd
from pandas import DataFrame
import matplotlib as mpl
import matplotlib.pyplot as plt
import time
#防止中文乱码
mpl.rcParams['font.sans-serif']=[u'simHei']
mpl.rcParams['axes.unicode_minus']=False
#加载数据
path="household_power_consumption_1000.txt"
df = pd.read_csv(path,sep=";")
#数据处理,包括,清除空数据
df1=df.replace("?",np.nan)
data = df1.dropna(axis=0,how="any")
#把数据中的字符串转化为数字
def data_formate(x):
    t = time.strptime(' '.join(x), '%d/%m/%Y %H:%M:%S')
    return (t.tm_year, t.tm_mon, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec)
X = data.iloc[:,0:2]
x = X.apply(lambda x:pd.Series(data_formate(x)),axis=1)
y = data.iloc[:,4]
#数据分集
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)
#标准化
ss = StandardScaler()
x_train=ss.fit_transform(x_train)
x_test=ss.transform(x_test)
#模型训练
pol = PolynomialFeatures(degree = 9)
xtrain_pol = pol.fit_transform(x_train)
xtest_pol = pol.fit_transform(x_test)
lr = LinearRegression()
lr.fit(xtrain_pol,y_train)
y_pridect=lr.predict(xtest_pol)
#输出参数
print("模型的系数(θ):",lr.coef_)
print("模型的截距:",lr.intercept_)
# print("训练集上R2:",lr.score(x_train, y_train))
print("测试集上R2:",lr.score(xtest_pol, y_test))
mse = np.average((y_pridect-y_test)**2)
rmse = np.sqrt(mse)
print("rmse:",rmse)
#画图
t=np.arange(len(y_test))
plt.figure(facecolor='w')#建一个画布,facecolor是背景色
plt.plot(t, y_test, 'r-', linewidth=2, label='真实值')
plt.plot(t, y_pridect, 'g-', linewidth=2, label='预测值')
plt.legend(loc = 'upper left')#显示图例,设置图例的位置
plt.title("线性回归预测时间和电压之间的关系", fontsize=20)
plt.grid(b=True)#加网格
plt.show()

当参数degree = 1,2,3,4时候图像如下:

image.png

准确率提高了不少,当degree = 9时候,会发现参数值会异常大,这就是出现了所谓的过拟合了,模型的系数(θ): [ 1.75147911e+12 4.24195739e+10 -2.94579982e+11 ... 0.00000000e+00
0.00000000e+00 0.00000000e+00]
为了防止模型的过拟合我们引入了正则项norm

正则项

  • L1-norm


    image.png
  • L2-norm


    image.png

    对应的回归模型分别是Ridge回归(L2-norm)和LASSO回归(L1-norm)

  • ElasitcNet算法
    同时使用L1正则和L2正则的线性回归模型就称为 ElasitcNet算法(弹性网络算法)


    image.png

机器学习调参

在实际工作中,对于各种算法模型(以线性模型弹性网络算法为例)来讲,我们需要获取θ、入、p的值的求解其实就是算法模型的求解,一般不需要开发人员参与(算法已经实现),
主要需要求解的是λ和p的值,这个过程就叫做调参(超参)

  • 交叉验证
    将训练数据分为多份,其中一份进行数据验证获取最优的超参:λ和p;比如:十折交叉验证、五折交叉验证(Sckⅰt- learn中默认)等
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,366评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,521评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,689评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,925评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,942评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,727评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,447评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,349评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,820评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,990评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,127评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,812评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,471评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,017评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,142评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,388评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,066评论 2 355

推荐阅读更多精彩内容