知识图谱关系抽取之PCNN——tensorflow实现

知识图谱( Knowledge Graph)以结构化的形式描述客观世界中概念、实体及其关系,将互联网的信息表达成更接近人类认知世界的形式,提供了一种更好地组织、管理和理解互联网海量信息的能力。上述一大段是我从2018知识图谱发展报告中copy下来的一段话,用普通人能听懂的人话来描述:知识图谱就是把去发现世间万物的之间的联系。 在技术上就是将数据以一个一个的<subject,relation,object>的三元组形式存储起来。

不知道大家有没有这样一种感受,如果你在某一领域的学习了解到很多的知识碎片,却无法将他们关联起来,这些知识碎片并不会加深你对这一领域的认知。而如果你能将他们联系起来,串联成一张知识网,那很有可能你就是这个领域决定的专家。因为你的脑中有这个领域的知识网,你就能知道这个领域的边界在哪。知识图谱就是要将知识串联起来,形成一张知识网。

知识图谱的应用场景:

知识图谱主要分为两类:
通用知识图谱和领域知识图谱。通用知识图谱主要需要知识的广度,而领域知识图谱需要知识具有深度。

  • 通用知识图谱最普遍的应用场景就是:搜索引擎,
  • 领域知识图谱的应用场景则比较丰富多样:司法,医疗,金融,电商等各行各业都可以构建属于自己行业的知识图谱,而这些知识图谱可以用于智能问答,辅助决策,风险规避等。

当然以上只是知识图谱被应用最多的场景,还有一些很有潜力的应用场景,比如将知识图谱和深度学习结合等。知识图谱这个新的,年轻的概念还等着大家去探索更多的应用可能性。

知识图谱的构建简介

这里笔者就不介绍详细版知识图谱构建流程,直接抛出一个简单粗暴版的构建流程。

  • 实体抽取,实体链接(两个实体同一个含义需要规整),目前最主流的算法就是CNN+LSTM+CRF进行实体识别。
  • 实体间关系抽取,拿到知识图谱最小单元三元组,比较经典算法的就是Piece-Wise-CNN和 LSTM+ Attention 。
  • 知识存储,一般采用图数据库(neo4j等)。

但是要注意的是,知识图谱一定要最先定义好构建它是用来干什么,目标业务导向,定义好符合业务逻辑schema层才是最最重要的。有了schema之后接下来的任务就是实体抽取和关系抽取啰,其中关系抽取是把知识点串联成一张知识网的重要过程,所以这里笔者着重介绍一下最近在知识图谱领域很火的有监督的关系抽取任务的一个模型PCNN。

关系抽取之PCNN(Piece-Wise-CNN)

这里笔者仔细解释一下有监督的关系抽取的任务的数据样式,任务形式,以及PCNN(Piece-Wise-CNN)的思想和tensorflow实现。
关系抽取数据:


data.png

input : 句子 Steve Jobs was the co-founder of Apple Inc和两个entities Steve Jobs 和 Apple Inc
out: 实体之间关系 : /business/company/founder

所以我们可以将其抽象成一个分类问题,输入句子和实体信息,然后让模型分出这两个实体之间的关系属于哪一类。

PCNN

下图清晰了显示了PCNN的整个网络架构,原文链接在这里,下面我对着下图介绍一下PCNN的实现过程:

  • 数据预处理:首先对数据进行位置编码,按句子中各个词离entity的距离进行编码。
    例如:“As we known,Steve Jobs was the co-founder of Apple Inc which is a great company in America.”
    由于句子中有两个entity,所以这条句子就会产生两个和句子长度相同的编码。
    pos_1:[-4,-3,-2,-1,0,1,2,3......] ,其中0就是Steve Jobs的位置。
    pos_2:[-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3......] 其中0就是Apple Inc的位置。
  • 切分句子:其中最主要的就是将一条文本数据在两个entity处各切一刀将文本且成了3段
    比如 As we known,Steve Jobs was the co-founder of Apple Inc which is a great company in America,将被切成:
  1. As we known,Steve Jobs
  2. Steve Jobs was the co-founder of Apple Inc
  3. Apple Inc which is a great company in America.
    注意,位置向量也同样进行了切分操作。
  • 特征提取:将位置特征和文本特征拼接之后,然后将上面三个数据分别通过CNN 提取特征,
  • 关系分类:提取出来的特征通过maxpooling层之后进行拼接后送入softmax层,最终得到relation的分类。
    pcnn.png

    从上面PCNN的流程我们可以发现,这个网络结构很注重entitiy之间的距离信息,位置信息,以及entitiy之间或者左右的信息。其实这些都是是关系抽取中最重要的特征。
  • 一般来说两个entitiy之间距离越近,则他们有关系的可能性越大。
  • 而透露出entities之间有关系的词一般会出现在两个entity之间,左侧,或者右侧。
    例如:Steve Jobs was the co-founder of Apple Inc , 关系词 co-founder就在两个entity之间

tensorflow 代码实现

由于之前对PCNN的整个流程有了比较详细的解释,这里笔者只是简单的介绍一下代码构成。
下方这一步是已经将文本向量和位置向量进行了切分,由于文本被两个entity分成了三段,再这三段加上各自的两个位置向量。所以网络一共有9个输入,加上关系label输出,一共需要定义10个placeholder。

import tensorflow as tf
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
tf.reset_default_graph()
word_ids_left = tf.placeholder(tf.float32, shape=[None, maxlen, word_emb_size])
word_ids_mid = tf.placeholder(tf.float32, shape=[None, maxlen, word_emb_size])
word_ids_right = tf.placeholder(tf.float32, shape=[None, maxlen, word_emb_size])
pos_l_1 = tf.placeholder(tf.int32, shape=[None, maxlen])
pos_l_2 = tf.placeholder(tf.int32, shape=[None, maxlen])
pos_m_1 = tf.placeholder(tf.int32, shape=[None, maxlen])
pos_m_2 = tf.placeholder(tf.int32, shape=[None, maxlen])
pos_r_1 = tf.placeholder(tf.int32, shape=[None, maxlen])
pos_r_2 = tf.placeholder(tf.int32, shape=[None, maxlen])
pos_r_2 = tf.placeholder(tf.int32, shape=[None, maxlen])
label = tf.placeholder(dtype=tf.int32,shape=[None,n_class])

下方代码这是PCNN的实现,其中Piece_Wise_CNN函数是对PCNN的实现。

def get_sentence_emb(word_ids,pos_1,pos_2):
    pos_emb_l1 = tf.keras.layers.Embedding(input_dim=498,output_dim=10,input_length=100)(pos_l_1)
    pos_emb_l2 = tf.keras.layers.Embedding(input_dim=498,output_dim=10,input_length=100)(pos_l_2)
    return tf.concat([word_ids,pos_emb_l1,pos_emb_l2],2)#[batch_size,maxlen,word_emb_size+2*pos_emb_size(10)]

def Piece_Wise_CNN(left_emb,mid_emb,right_emb,feature_map,n_class):
    left = tf.keras.layers.Conv1D(filters=feature_map,kernel_size=3)(left_emb)#[batch_size,maxlen,word_emb_size+2*pos_emb_size(10)]
    left = tf.keras.layers.GlobalMaxPool1D()(left)#[batch_size,feature_map]
    mid = tf.keras.layers.Conv1D(filters=feature_map,kernel_size=3)(mid_emb)#[batch_size,maxlen,word_emb_size+2*pos_emb_size(10)]
    mid = tf.keras.layers.GlobalMaxPool1D()(mid)#[batch_size,feature_map]
    right = tf.keras.layers.Conv1D(filters=feature_map,kernel_size=3)(right_emb)#[batch_size,maxlen,word_emb_size+2*pos_emb_size(10)]
    right = tf.keras.layers.GlobalMaxPool1D()(right)#[batch_size,feature_map]
    final_feature = tf.concat([left,mid,right],1)#[batch_size,3*feature_map]
    out = tf.keras.layers.Dense(n_class,activation="softmax")(final_feature)  #[batch_size,n_class]
    return out

def train_op(out,label,lr):
    losses = tf.nn.softmax_cross_entropy_with_logits_v2(
                    logits=out, labels=label)
    loss = tf.reduce_mean(losses)
    train_op = tf.train.GradientDescentOptimizer(learning_rate=lr).minimize(loss)
    return train_op,loss

这里是定义train_op部分。

left_emb = get_sentence_emb(word_ids_left,pos_l_1,pos_l_2)
mid_emb = get_sentence_emb(word_ids_mid,pos_m_1,pos_m_2)
right_emb = get_sentence_emb(word_ids_right,pos_r_1,pos_r_2)
out = Piece_Wise_CNN(left_emb,mid_emb,right_emb,20,n_class)
train_op,loss = train_op(out,label,lr = 0.01)

结语

这里笔者主要是想通过PCNN这个经典的关系抽取网络说明:其实有监督的关系抽取任务的关键是需要神经网络理解两个entity之间的语义连结,所以,而如何利用好句子中entity周围的词语的语义信息和entity之间的位置信息,可能是解决这类任务的关键。笔者在之前的文章中多次强调过自然语言处理最终目标还是希望算法能够理解语义。像PCNN这个网络则提出了切分句子,集中注意力关注句子提供关键信息的部分(自己的理解),也许是一个好的方向。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容

  • 在本文中,笔者主要想分享一下自底向上构建知识图谱的全过程,抛砖引玉,欢迎大家交流。 “The world is n...
    dingding_74be阅读 1,394评论 1 7
  • 爸妈老了,累了,我要把他们当成孩子一样,去疼爱他们,不再有任何责怪,让他们幸福快乐度晚年
    凡尘花韵阅读 265评论 0 0
  • 乐的清闲,吃过饭早早睡了,被父女俩回来的声音吵醒,悦悦说着白天的一桩桩有意思的事,我只要倾听就行。 觉得自己满血复...
    悦悦和书的那些事阅读 194评论 0 0
  • 艳彬在她42岁时生下了她女儿,当时怀孕时我担心的很,一直劝她三思而行,但她执意要为这任丈夫生个小孩,园他做父亲的梦...
    尤斯草阅读 250评论 0 2
  • 我年轻,又年老,连灵魂都无聊至极。 ——《超脱》 ...
    KEVINANNAT阅读 374评论 0 0