Spark存储内存在哪些地方用到?

漫谈Spark内存管理(一)有提到问题:“ Spark中用到内存的地方有哪些?存储内存主要消耗在哪些地方?执行内存主要消耗在哪些地方?”。本文就从存储内存使用的角度聊聊spark中哪些地方需要用到存储内存。

MemoryManger.acqurieStorageMemory的调用

我们知道,spark中使用内存之前必须先通过MemoryManager申请内存,那么从MemoryManager的acquire系列方法就可以找出哪些地方有申请内存。MemoryManager有三个acquire方法,分别是acquireStorageMemory, acquireUnrollMemory, acquireExecutionMemory. 其中,acquireUnrollMemory就是直接调用了acquireStorageMemory方法(针对UnifiedMemoryManager而言)。

本文主要讨论acquireStorageMemory的调用路径。除了UnifiedMemoryManager.acquireUnrollMemory外,acquireStorageMemory方法在MemoryStore中有两处调用,一个是在MemoryStore.putBytes中:

MemoryStore.putBytes

另一处在MemoryStore.putIterator中:

MemoryStore.putIterator

我们以MemoryStore.putIterator的调用路径为例(MemoryStore.putBytes的调用路径和MemoryStore.putIterator大体相似,感兴趣的童鞋可以自行查阅源码),分析存储内存申请主要来自哪些模块。

RDD block相关的存储内存申请

1) ShuffleMapTask/ResultTask.runTask -> RDD.iterator -> RDD.getOrCompute -> BlockManager.getOrElseUpdate -> BlockManager.doPutIterator -> MemoryStore.putIteratorAsBytes -> MemoryStore.putIterator

2) ShuffleMapTask/ResultTask.runTask -> RDD.iterator -> RDD.getOrCompute -> BlockManager.getOrElseUpdate -> BlockManager.doPutIterator -> MemoryStore.putIteratorAsValues -> MemoryStore.putIterator

3) ShuffleMapTask/ResultTask.runTask -> RDD.iterator -> RDD.getOrCompute -> BlockManager.getOrElseUpdate -> BlockManager.getLocalValues -> BlockManager.maybeCacheDiskValuesInMemory -> MemoryStore.putIteratorAsValues -> MemoryStore.putIterator

4) ShuffleMapTask/ResultTask.runTask -> RDD.iterator -> RDD.getOrCompute -> BlockManager.getOrElseUpdate -> BlockManager.get -> BlockManager.getLocalValues -> BlockManager.maybeCacheDiskValuesInMemory -> MemoryStore.putIteratorAsValues -> MemoryStore.putIterator

5) ShuffleMapTask/ResultTask.runTask -> RDD.iterator -> RDD.getOrCompute -> RDD.computeOrReadCheckpoint -> WriteAheadLogBackedBlockRDD.compute -> WriteAheadLogBackedBlockRDD.compute$getBlockFromWriteAheadLog -> blockManager.putBytes -> BlockManager.doPutBytes -> MemoryStore.putIteratorAsValues -> MemoryStore.putIterator

分析:当RDD的storage level包括memory时(也就是调用了RDD.cache或RDD.persist将RDD数据缓存到了memory中),Task在计算得到RDD分区数据时会申请存储内存将数据缓存在内存中。

Broadcast block相关的存储内存申请

1) TorrentBroadcast.writeBlocks -> BlockManager.putSingle -> BlockManager.putIterator -> BlockManager.doPutIterator -> MemoryStore.putIteratorAsValues -> MemoryStore.putIterator

2) TorrentBroadcast.readBroadcastBlock -> BlockManager.putSingle -> BlockManager.putIterator -> BlockManager.doPutIterator -> MemoryStore.putIteratorAsValues -> MemoryStore.putIterator

3) TorrentBroadcast.readBroadcastBlock -> BlockManager.getLocalValues -> BlockManager.maybeCacheDiskValuesInMemory -> MemoryStore.putIteratorAsValues -> MemoryStore.putIterator

分析:对广播变量进行存储/缓存也会用到存储内存。

RDD block Replication相关的存储内存申请

1) NettyBlockRpcServer.receive -> BlockDataManager.putBlockData -> BlockManager.putBytes -> BlockManager.doPutBytes -> MemoryStore.putIteratorAsValues -> MemoryStore.putIterator

2) NettyBlockRpcServer.receiveStream -> BlockDataManager.putBlockDataAsStream -> BlockManager.putBytes -> BlockManager.doPutBytes -> MemoryStore.putIteratorAsValues -> MemoryStore.putIterator

分析:当RDD的storage level中的_replication大于1时,BlockManager需要将block数据发到另一个远程结点以备份,此时BlockManager会向远程结点发送UploadBlock消息,远程结点在收到该消息后会申请存储内存以存放收到的block数据。

Task运行结果数据相关的存储内存申请

TaskRunner.run -> BlockManager.putBytes -> BlockManager.doPutBytes -> MemoryStore.putIteratorAsValues -> MemoryStore.putIterator

分析:TaskRunner处理task结果数据时,如果task结果数据大于maxDirectResultSize,则会将其存储到本地blockManager,然后将block的meta数据返回给driver,并且这个时候用的storeage level是MEMORY_AND_DISK_SER, 所以会向MemoryManager申请存储内存。

Streaming receiver相关的存储内存申请

1) ReceiverSupervisorImpl.pushAndReportBlock -> BlockManagerBasedBlockHandler.storeBlock -> BlockManager.putIterator -> BlockManager.doPutIterator -> MemoryStore.putIteratorAsBytes -> MemoryStore.putIterator

2) ReceiverSupervisorImpl.pushAndReportBlock -> BlockManagerBasedBlockHandler.storeBlock -> BlockManager.putBytes -> BlockManager.doPutBytes -> MemoryStore.putIteratorAsValues -> MemoryStore.putIterator

分析:Spark streaming中的receiver-based模式下,ReceiverSupervisorImpl类也会申请存储内存以存放block数据,这部分后面写到spark streaming相关文章,再详细讨论。

说明

1. 本文源码分析基于spark 2.4.0版本

2. 如有错误,望读者指出

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,372评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,368评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,415评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,157评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,171评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,125评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,028评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,887评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,310评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,533评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,690评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,411评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,004评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,812评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,693评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,577评论 2 353

推荐阅读更多精彩内容