Python pandas merge不能根据列名合并两个数据框(Key Error)?

折腾

数据分析用惯了R,感觉pandas用起来就有点反人类了。今天用python的pandas处理数据时两个数据框硬是合并不起来。

我有两个数据框,列名是未知的,只能知道索引,以及哪两个索引是用做主键合并的。(别问我为啥列名未知,因为我是开发工具)。

思路是这样的,找到主键列,重命名,再合并。

df1.columns.values[args.marker1-1]="markerID"
df2.columns.values[args.marker2-1]="markerID"
pd.merge(df1,df2,on='markerID')

但结果就是无论如何也合并不了。报错KeyError:'markerID'

网上查了下是说不能直接用columns.values赋值,要分开。于是:

colnames_df1 = df1.columns
colnames_df1[args.marker1-1] = "markerID"
df1.columns = colnames_df1
colnames_df2 = df2.columns
colnames_df2[args.marker1-1] = "markerID"
df2.columns = colnames_df2
pd.merge(df1,df2,on='markerID')

实际上并没有什么区别。TypeError: Index does not support mutable operations

把数据框的列名全部print出来,看起来是正常的,为什么就合并不了?

用很粗暴的方法:

pd.merge(df1,df2,left_index=True,right_index=True)

对于大部分数据可以,但有些数据是不行的,而且不报错,结果是错的,有很大风险。

解决方法

最后在网上又查了一圈,终于找到了答案。

原因:
两个数据框的主键名看起来一样,实际上可能不同,因为可能含有空格。怎么来的?无解。

解决方法就是去除列名中可能存在的空格。

方法一:

df1.columns = df1.columns.str.strip() 
df2.columns=df2.columns.str.strip()

方法二:
在数据读入时去掉。

pd.read_csv(file,sep='\s*,\s*') 
# delimiter includes x*whitespace before and after

对应到我的数据就是:

df1.columns = df1.columns.str.strip()
df2.columns = df2.columns.str.strip()
mrkid = df1.columns.values[args.marker-1]
df1.columns.values[args.marker-1]="markerID"
mergesnp = pd.merge(df1,df2,on='markerID')
mergesnp.columns.values[args.marker-1]=mrkid

参考:https://stackoverflow.com/questions/47608112/python-pandas-merge-cant-find-column-name

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,348评论 6 491
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,122评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,936评论 0 347
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,427评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,467评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,785评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,931评论 3 406
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,696评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,141评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,483评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,625评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,291评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,892评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,741评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,977评论 1 265
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,324评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,492评论 2 348

推荐阅读更多精彩内容