xgboost相关

xgboost多线程预测的不安全问题

xgboost的predict_proba

官网上说了,predict_proba是一个多线程不安全的方法,主要是因为预测的一个C++代码内部调用的时候有一个PredLoopSpecalize,里面对openmp的thread_temp变量作为类成员变量,在多线程会被当成公共变量修改。说白了就是有预测的内部变量是公共变量。

xgboost特征重要性

如何获取特征重要性:booster中有三种获取方式:
Importance type can be defined as:
'weight' - the number of times a feature is used to split the data across all trees.
'gain' - the average gain of the feature when it is used in trees
'cover' - the average coverage of the feature when it is used in trees
默认是用weight来显示,但是不一定准确
cover: the sum of second order gradient of training data classified to the leaf, if it is square loss, this simply corresponds to the number of instances in that branch. Deeper in the tree a node is, lower this metric will be

XGBoost函数笔记

XGBoost核心代码基于C++开发,训练和预测都是C++代码,外部由Python封装。
最常用的两个类是:

  1. xgboost.XGBClassifier分类器
  2. xgboost.XGBRegressor回归器
    两个类都继承了XGBModel,XGBModel实现了sklearn的接口
    其中分类和回归都是基于booster来完成的,内部有个Booster类,非常重要,每个booset都是一个单独的模型,内部有很多函数,比如get_score,get_dump等函数,都非常有用。booset里面很多函数也是和C代码结合的部分。

booster类别初探

booster有三种选择: gbtree, gblinear or dart.

  1. gbtree 梯度提升树,常用,默认
  2. gblinear就是一个线性分类/回归器
  3. dart 带dropout的

gblinear

利用gblinear训练出的结果就是一个线性分类器

并行化

树内的部可以做并行,在一次分裂之后,子树的分裂可以通过

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,591评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,448评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,823评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,204评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,228评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,190评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,078评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,923评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,334评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,550评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,727评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,428评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,022评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,672评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,826评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,734评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,619评论 2 354

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,322评论 0 10
  • 一种缘分,结识了简书这个平台,也唤起了我多年不再记事随便涂写的那种欲望。几年后的第一次书写,还望笑纳。 26岁的我...
    Aries_Ni阅读 1,829评论 0 6
  • ---《旧作归档》2009年 此文写于2004年12月24日,今天由此文纪念我的父亲!那个坚强、忍耐、有力的可爱的...
    Andylee阅读 255评论 3 4
  • 1、0801今日话题 2、0801晨读感悟 1 0801今日话题 你最近和家人一起吃饭/娱乐是什么时候?你们有多...
    An_An阅读 213评论 0 0