3. Pandas使用

DataFrame的结构

import pandas as pd
import numpy as np

# 创建一个符合正态分布的10个股票的5天的涨跌幅数据
stock_change=np.random.normal(0,1,(10,5))

stock_change

array([[ 1.76548834, -2.1033278 , -0.44765295,  1.6133684 ,  0.56440317],
       [-0.28406163,  0.33190268,  0.15697138, -0.15352828,  0.39168077],
       [ 0.97804543,  0.70247765,  0.48852276, -0.84483313, -0.4901491 ],
       [ 0.32663842, -1.18491493, -1.85617695, -0.08334347, -0.88467526],
       [-0.0606477 , -0.3282171 ,  0.13469079, -0.33644424,  0.49229211],
       [-0.08971546,  0.29502656,  0.58225254, -1.15526343,  0.1121633 ],
       [ 0.08384949,  0.63896248,  0.03189999, -0.17538923, -0.06095104],
       [ 0.0892971 , -1.54426915,  0.22247612, -0.31827644,  1.4569718 ],
       [-1.31604909, -1.09219638, -0.64118638, -0.55174267,  2.54943429],
       [-0.75827099,  0.19581938, -0.11856612,  0.44903057, -0.07891904]])

# 创建dataframe
stock_num=["股票{}".format(i)for i in range(10)]  #构造行标
date=pd.date_range(start="20200629", periods=5,freq="B")

stock_change=pd.DataFrame(stock_change, index=stock_num,columns=date)
stock_change

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

2020-06-29 00:00:00 2020-06-30 00:00:00 2020-07-01 00:00:00 2020-07-02 00:00:00 2020-07-03 00:00:00
股票0 1.765488 -2.103328 -0.447653 1.613368 0.564403
股票1 -0.284062 0.331903 0.156971 -0.153528 0.391681
股票2 0.978045 0.702478 0.488523 -0.844833 -0.490149
股票3 0.326638 -1.184915 -1.856177 -0.083343 -0.884675
股票4 -0.060648 -0.328217 0.134691 -0.336444 0.492292
股票5 -0.089715 0.295027 0.582253 -1.155263 0.112163
股票6 0.083849 0.638962 0.031900 -0.175389 -0.060951
股票7 0.089297 -1.544269 0.222476 -0.318276 1.456972
股票8 -1.316049 -1.092196 -0.641186 -0.551743 2.549434
股票9 -0.758271 0.195819 -0.118566 0.449031 -0.078919
stock_change.shape

(10, 5)

stock_change.index

Index(['股票0', '股票1', '股票2', '股票3', '股票4', '股票5', '股票6', '股票7', '股票8', '股票9'], dtype='object')

stock_change.columns

DatetimeIndex(['2020-06-29', '2020-06-30', '2020-07-01', '2020-07-02',
               '2020-07-03'],
              dtype='datetime64[ns]', freq='B')

stock_change.values

array([[ 1.76548834, -2.1033278 , -0.44765295,  1.6133684 ,  0.56440317],
       [-0.28406163,  0.33190268,  0.15697138, -0.15352828,  0.39168077],
       [ 0.97804543,  0.70247765,  0.48852276, -0.84483313, -0.4901491 ],
       [ 0.32663842, -1.18491493, -1.85617695, -0.08334347, -0.88467526],
       [-0.0606477 , -0.3282171 ,  0.13469079, -0.33644424,  0.49229211],
       [-0.08971546,  0.29502656,  0.58225254, -1.15526343,  0.1121633 ],
       [ 0.08384949,  0.63896248,  0.03189999, -0.17538923, -0.06095104],
       [ 0.0892971 , -1.54426915,  0.22247612, -0.31827644,  1.4569718 ],
       [-1.31604909, -1.09219638, -0.64118638, -0.55174267,  2.54943429],
       [-0.75827099,  0.19581938, -0.11856612,  0.44903057, -0.07891904]])

stock_change.T

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

股票0 股票1 股票2 股票3 股票4 股票5 股票6 股票7 股票8 股票9
2020-06-29 1.765488 -0.284062 0.978045 0.326638 -0.060648 -0.089715 0.083849 0.089297 -1.316049 -0.758271
2020-06-30 -2.103328 0.331903 0.702478 -1.184915 -0.328217 0.295027 0.638962 -1.544269 -1.092196 0.195819
2020-07-01 -0.447653 0.156971 0.488523 -1.856177 0.134691 0.582253 0.031900 0.222476 -0.641186 -0.118566
2020-07-02 1.613368 -0.153528 -0.844833 -0.083343 -0.336444 -1.155263 -0.175389 -0.318276 -0.551743 0.449031
2020-07-03 0.564403 0.391681 -0.490149 -0.884675 0.492292 0.112163 -0.060951 1.456972 2.549434 -0.078919
stock_change.head(7)

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

2020-06-29 00:00:00 2020-06-30 00:00:00 2020-07-01 00:00:00 2020-07-02 00:00:00 2020-07-03 00:00:00
股票0 1.765488 -2.103328 -0.447653 1.613368 0.564403
股票1 -0.284062 0.331903 0.156971 -0.153528 0.391681
股票2 0.978045 0.702478 0.488523 -0.844833 -0.490149
股票3 0.326638 -1.184915 -1.856177 -0.083343 -0.884675
股票4 -0.060648 -0.328217 0.134691 -0.336444 0.492292
股票5 -0.089715 0.295027 0.582253 -1.155263 0.112163
股票6 0.083849 0.638962 0.031900 -0.175389 -0.060951
# 索引值修改
new_index=["股票00{}".format(i)for i in range(10)] 
stock_change.index=new_index

stock_change

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

2020-06-29 00:00:00 2020-06-30 00:00:00 2020-07-01 00:00:00 2020-07-02 00:00:00 2020-07-03 00:00:00
股票000 1.765488 -2.103328 -0.447653 1.613368 0.564403
股票001 -0.284062 0.331903 0.156971 -0.153528 0.391681
股票002 0.978045 0.702478 0.488523 -0.844833 -0.490149
股票003 0.326638 -1.184915 -1.856177 -0.083343 -0.884675
股票004 -0.060648 -0.328217 0.134691 -0.336444 0.492292
股票005 -0.089715 0.295027 0.582253 -1.155263 0.112163
股票006 0.083849 0.638962 0.031900 -0.175389 -0.060951
股票007 0.089297 -1.544269 0.222476 -0.318276 1.456972
股票008 -1.316049 -1.092196 -0.641186 -0.551743 2.549434
股票009 -0.758271 0.195819 -0.118566 0.449031 -0.078919
stock_change.reset_index(drop=True)

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

2020-06-29 00:00:00 2020-06-30 00:00:00 2020-07-01 00:00:00 2020-07-02 00:00:00 2020-07-03 00:00:00
0 1.765488 -2.103328 -0.447653 1.613368 0.564403
1 -0.284062 0.331903 0.156971 -0.153528 0.391681
2 0.978045 0.702478 0.488523 -0.844833 -0.490149
3 0.326638 -1.184915 -1.856177 -0.083343 -0.884675
4 -0.060648 -0.328217 0.134691 -0.336444 0.492292
5 -0.089715 0.295027 0.582253 -1.155263 0.112163
6 0.083849 0.638962 0.031900 -0.175389 -0.060951
7 0.089297 -1.544269 0.222476 -0.318276 1.456972
8 -1.316049 -1.092196 -0.641186 -0.551743 2.549434
9 -0.758271 0.195819 -0.118566 0.449031 -0.078919
stock_change

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

2020-06-29 00:00:00 2020-06-30 00:00:00 2020-07-01 00:00:00 2020-07-02 00:00:00 2020-07-03 00:00:00
股票000 1.765488 -2.103328 -0.447653 1.613368 0.564403
股票001 -0.284062 0.331903 0.156971 -0.153528 0.391681
股票002 0.978045 0.702478 0.488523 -0.844833 -0.490149
股票003 0.326638 -1.184915 -1.856177 -0.083343 -0.884675
股票004 -0.060648 -0.328217 0.134691 -0.336444 0.492292
股票005 -0.089715 0.295027 0.582253 -1.155263 0.112163
股票006 0.083849 0.638962 0.031900 -0.175389 -0.060951
股票007 0.089297 -1.544269 0.222476 -0.318276 1.456972
股票008 -1.316049 -1.092196 -0.641186 -0.551743 2.549434
股票009 -0.758271 0.195819 -0.118566 0.449031 -0.078919
stock_change.set_index("2020-6-29 00:00:00")

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

2020-06-30 00:00:00 2020-07-01 00:00:00 2020-07-02 00:00:00 2020-07-03 00:00:00
2020-6-29 00:00:00
--- --- --- --- ---
1.765488 -2.103328 -0.447653 1.613368 0.564403
-0.284062 0.331903 0.156971 -0.153528 0.391681
0.978045 0.702478 0.488523 -0.844833 -0.490149
0.326638 -1.184915 -1.856177 -0.083343 -0.884675
-0.060648 -0.328217 0.134691 -0.336444 0.492292
-0.089715 0.295027 0.582253 -1.155263 0.112163
0.083849 0.638962 0.031900 -0.175389 -0.060951
0.089297 -1.544269 0.222476 -0.318276 1.456972
-1.316049 -1.092196 -0.641186 -0.551743 2.549434
-0.758271 0.195819 -0.118566 0.449031 -0.078919
stock_change

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

2020-06-29 00:00:00 2020-06-30 00:00:00 2020-07-01 00:00:00 2020-07-02 00:00:00 2020-07-03 00:00:00
股票000 1.765488 -2.103328 -0.447653 1.613368 0.564403
股票001 -0.284062 0.331903 0.156971 -0.153528 0.391681
股票002 0.978045 0.702478 0.488523 -0.844833 -0.490149
股票003 0.326638 -1.184915 -1.856177 -0.083343 -0.884675
股票004 -0.060648 -0.328217 0.134691 -0.336444 0.492292
股票005 -0.089715 0.295027 0.582253 -1.155263 0.112163
股票006 0.083849 0.638962 0.031900 -0.175389 -0.060951
股票007 0.089297 -1.544269 0.222476 -0.318276 1.456972
股票008 -1.316049 -1.092196 -0.641186 -0.551743 2.549434
股票009 -0.758271 0.195819 -0.118566 0.449031 -0.078919
type(stock_change.loc["股票004"])

pandas.core.series.Series

stock_change.loc["股票004"]

2020-06-29   -0.060648
2020-06-30   -0.328217
2020-07-01    0.134691
2020-07-02   -0.336444
2020-07-03    0.492292
Freq: B, Name: 股票004, dtype: float64

pd.Series(np.arange(2,20,2))

0     2
1     4
2     6
3     8
4    10
5    12
6    14
7    16
8    18
dtype: int64

sr=pd.Series({'red':100,"blue":200,"queen":500, 'yellow':1000})

sr

blue       200
queen      500
red        100
yellow    1000
dtype: int64

sr.index

Index(['blue', 'queen', 'red', 'yellow'], dtype='object')

sr.values

array([ 200,  500,  100, 1000])

pandas 操作suoyin

data=pd.read_csv("./stock_day/stock_day.csv")

data = data.drop(["ma5","ma10","ma20","v_ma5","v_ma10","v_ma20"], axis=1)  #让数据简单一些

data.head()

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

open high close low volume price_change p_change turnover
2018-02-27 23.53 25.88 24.16 23.53 95578.03 0.63 2.68 2.39
2018-02-26 22.80 23.78 23.53 22.80 60985.11 0.69 3.02 1.53
2018-02-23 22.88 23.37 22.82 22.71 52914.01 0.54 2.42 1.32
2018-02-22 22.25 22.76 22.28 22.02 36105.01 0.36 1.64 0.90
2018-02-14 21.49 21.99 21.92 21.48 23331.04 0.44 2.05 0.58
data["open"]["2018-02-23"]   #pandas必须先列后行

22.88

data.loc["2018-02-23"]["open"]  #使用loc可以先行后列

22.88

data.loc["2018-02-26","open"]

22.8

data.iloc[1,0]

22.8

data.loc[data.index[0:4],['open','close','high','low']]

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

open close high low
2018-02-27 23.53 24.16 25.88 23.53
2018-02-26 22.80 23.53 23.78 22.80
2018-02-23 22.88 22.82 23.37 22.71
2018-02-22 22.25 22.28 22.76 22.02
data.iloc[0:4,data.columns.get_indexer(['open','close','high','low'])]

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

open close high low
2018-02-27 23.53 24.16 25.88 23.53
2018-02-26 22.80 23.53 23.78 22.80
2018-02-23 22.88 22.82 23.37 22.71
2018-02-22 22.25 22.28 22.76 22.02
data.price_change.head()

2018-02-27    0.63
2018-02-26    0.69
2018-02-23    0.54
2018-02-22    0.36
2018-02-14    0.44
Name: price_change, dtype: float64

# data["open"]=8

data.head()

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

open high close low volume price_change p_change turnover
2018-02-27 23.53 25.88 24.16 23.53 95578.03 0.63 2.68 2.39
2018-02-26 22.80 23.78 23.53 22.80 60985.11 0.69 3.02 1.53
2018-02-23 22.88 23.37 22.82 22.71 52914.01 0.54 2.42 1.32
2018-02-22 22.25 22.76 22.28 22.02 36105.01 0.36 1.64 0.90
2018-02-14 21.49 21.99 21.92 21.48 23331.04 0.44 2.05 0.58
data=data.sort_values(by="p_change", ascending=False).head()
data.head()

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

open high close low volume price_change p_change turnover
2015-08-28 15.40 16.46 16.46 15.00 117827.60 1.50 10.03 4.03
2015-05-21 27.50 28.22 28.22 26.50 121190.11 2.57 10.02 4.15
2016-12-22 18.50 20.42 20.42 18.45 150470.83 1.86 10.02 3.77
2015-08-04 16.20 17.35 17.35 15.80 94292.63 1.58 10.02 3.23
2016-07-07 18.66 18.66 18.66 18.41 48756.55 1.70 10.02 1.67
data=data.sort_values(by=['open','high'])

data.head()

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

open high close low volume price_change p_change turnover
2015-08-28 15.40 16.46 16.46 15.00 117827.60 1.50 10.03 4.03
2015-08-04 16.20 17.35 17.35 15.80 94292.63 1.58 10.02 3.23
2016-12-22 18.50 20.42 20.42 18.45 150470.83 1.86 10.02 3.77
2016-07-07 18.66 18.66 18.66 18.41 48756.55 1.70 10.02 1.67
2015-05-21 27.50 28.22 28.22 26.50 121190.11 2.57 10.02 4.15
data.sort_index()

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

open high close low volume price_change p_change turnover
2015-05-21 27.50 28.22 28.22 26.50 121190.11 2.57 10.02 4.15
2015-08-04 16.20 17.35 17.35 15.80 94292.63 1.58 10.02 3.23
2015-08-28 15.40 16.46 16.46 15.00 117827.60 1.50 10.03 4.03
2016-07-07 18.66 18.66 18.66 18.41 48756.55 1.70 10.02 1.67
2016-12-22 18.50 20.42 20.42 18.45 150470.83 1.86 10.02 3.77
data["p_change"].sort_values(ascending=True)

2015-08-04    10.02
2016-12-22    10.02
2016-07-07    10.02
2015-05-21    10.02
2015-08-28    10.03
Name: p_change, dtype: float64

data["p_change"].sort_index(ascending=True)

2015-05-21    10.02
2015-08-04    10.02
2015-08-28    10.03
2016-07-07    10.02
2016-12-22    10.02
Name: p_change, dtype: float64

data

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

open high close low volume price_change p_change turnover
2015-08-28 15.40 16.46 16.46 15.00 117827.60 1.50 10.03 4.03
2015-08-04 16.20 17.35 17.35 15.80 94292.63 1.58 10.02 3.23
2016-12-22 18.50 20.42 20.42 18.45 150470.83 1.86 10.02 3.77
2016-07-07 18.66 18.66 18.66 18.41 48756.55 1.70 10.02 1.67
2015-05-21 27.50 28.22 28.22 26.50 121190.11 2.57 10.02 4.15
data+100

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

open high close low volume price_change p_change turnover
2015-08-28 115.40 116.46 116.46 115.00 117927.60 101.50 110.03 104.03
2015-08-04 116.20 117.35 117.35 115.80 94392.63 101.58 110.02 103.23
2016-12-22 118.50 120.42 120.42 118.45 150570.83 101.86 110.02 103.77
2016-07-07 118.66 118.66 118.66 118.41 48856.55 101.70 110.02 101.67
2015-05-21 127.50 128.22 128.22 126.50 121290.11 102.57 110.02 104.15
data/100

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

open high close low volume price_change p_change turnover
2015-08-28 0.1540 0.1646 0.1646 0.1500 1178.2760 0.0150 0.1003 0.0403
2015-08-04 0.1620 0.1735 0.1735 0.1580 942.9263 0.0158 0.1002 0.0323
2016-12-22 0.1850 0.2042 0.2042 0.1845 1504.7083 0.0186 0.1002 0.0377
2016-07-07 0.1866 0.1866 0.1866 0.1841 487.5655 0.0170 0.1002 0.0167
2015-05-21 0.2750 0.2822 0.2822 0.2650 1211.9011 0.0257 0.1002 0.0415
data.add(100)

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

open high close low volume price_change p_change turnover
2015-08-28 115.40 116.46 116.46 115.00 117927.60 101.50 110.03 104.03
2015-08-04 116.20 117.35 117.35 115.80 94392.63 101.58 110.02 103.23
2016-12-22 118.50 120.42 120.42 118.45 150570.83 101.86 110.02 103.77
2016-07-07 118.66 118.66 118.66 118.41 48856.55 101.70 110.02 101.67
2015-05-21 127.50 128.22 128.22 126.50 121290.11 102.57 110.02 104.15
data["p_change"]>2

2015-08-28    True
2015-08-04    True
2016-12-22    True
2016-07-07    True
2015-05-21    True
Name: p_change, dtype: bool

data

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

open high close low volume price_change p_change turnover
2015-08-28 15.40 16.46 16.46 15.00 117827.60 1.50 10.03 4.03
2015-08-04 16.20 17.35 17.35 15.80 94292.63 1.58 10.02 3.23
2016-12-22 18.50 20.42 20.42 18.45 150470.83 1.86 10.02 3.77
2016-07-07 18.66 18.66 18.66 18.41 48756.55 1.70 10.02 1.67
2015-05-21 27.50 28.22 28.22 26.50 121190.11 2.57 10.02 4.15
data[data["open"]>17]

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

open high close low volume price_change p_change turnover
2016-12-22 18.50 20.42 20.42 18.45 150470.83 1.86 10.02 3.77
2016-07-07 18.66 18.66 18.66 18.41 48756.55 1.70 10.02 1.67
2015-05-21 27.50 28.22 28.22 26.50 121190.11 2.57 10.02 4.15
data.query("p_change>10&open>18").head()

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

open high close low volume price_change p_change turnover
2016-12-22 18.50 20.42 20.42 18.45 150470.83 1.86 10.02 3.77
2016-07-07 18.66 18.66 18.66 18.41 48756.55 1.70 10.02 1.67
2015-05-21 27.50 28.22 28.22 26.50 121190.11 2.57 10.02 4.15
data["price_change"].isin([1.86,2.57])

2015-08-28    False
2015-08-04    False
2016-12-22     True
2016-07-07    False
2015-05-21     True
Name: price_change, dtype: bool

data.describe()

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

open high close low volume price_change p_change turnover
count 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000
mean 19.252000 20.222000 20.222000 18.832000 106507.544000 1.842000 10.022000 3.370000
std 4.824367 4.712963 4.712963 4.555203 37950.208695 0.428976 0.004472 1.014101
min 15.400000 16.460000 16.460000 15.000000 48756.550000 1.500000 10.020000 1.670000
25% 16.200000 17.350000 17.350000 15.800000 94292.630000 1.580000 10.020000 3.230000
50% 18.500000 18.660000 18.660000 18.410000 117827.600000 1.700000 10.020000 3.770000
75% 18.660000 20.420000 20.420000 18.450000 121190.110000 1.860000 10.020000 4.030000
max 27.500000 28.220000 28.220000 26.500000 150470.830000 2.570000 10.030000 4.150000
data.idxmax()

open            2015-05-21
high            2015-05-21
close           2015-05-21
low             2015-05-21
volume          2016-12-22
price_change    2015-05-21
p_change        2015-08-28
turnover        2015-05-21
dtype: object

data=pd.read_csv("./stock_day/stock_day.csv")
data = data.drop(["ma5","ma10","ma20","v_ma5","v_ma10","v_ma20"], axis=1)  #让数据简单一些

data.head()

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

open high close low volume price_change p_change turnover
2018-02-27 23.53 25.88 24.16 23.53 95578.03 0.63 2.68 2.39
2018-02-26 22.80 23.78 23.53 22.80 60985.11 0.69 3.02 1.53
2018-02-23 22.88 23.37 22.82 22.71 52914.01 0.54 2.42 1.32
2018-02-22 22.25 22.76 22.28 22.02 36105.01 0.36 1.64 0.90
2018-02-14 21.49 21.99 21.92 21.48 23331.04 0.44 2.05 0.58
data["p_change"].sort_index().cumsum().head()

2015-03-02     2.62
2015-03-03     4.06
2015-03-04     5.63
2015-03-05     7.65
2015-03-06    16.16
Name: p_change, dtype: float64

data["p_change"].sort_index().cumsum().plot()

<matplotlib.axes._subplots.AxesSubplot at 0x7f6c86b3c9e8>

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,423评论 6 491
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,147评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,019评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,443评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,535评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,798评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,941评论 3 407
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,704评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,152评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,494评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,629评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,295评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,901评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,742评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,978评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,333评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,499评论 2 348