MSER+NMS文本区域检测

1.MSER
MSER最大稳定极值区域(MSER-Maximally Stable Extremal Regions),该算法是2002提出的,主要是基于分水岭的思想来做图像中斑点的检测。

原理:MSER对一幅已经处理成灰度的图像做二值化处理,这个处理的阈值从0到255递增,这个阈值的递增类似于在一片土地上做水平面的上升,随着水平面上升,高高低低凹凸不平的土地区域就会不断被淹没,这就是分水岭算法,而这个高低不同,就是图像中灰度值的不同。而在一幅含有文字的图像上,有些区域(比如文字)由于颜色(灰度值)是一致的,因此在水平面(阈值)持续增长的一段时间内都不会被覆盖,直到阈值涨到文字本身的灰度值时才会被淹没,这些区域就叫做最大稳定极值区域。


公式

其中,Qi表示阈值为i时的某一连通区域,Δ 为灰度阈值的微小变化量,q(i) 为阈值是 i 时的区域 Qi 的变化率。
当q(i) 为局部极小值时,则Qi 为最大稳定极值区域。

Detailed Description

Maximally stable extremal region extractor.
The class encapsulates all the parameters of the MSER extraction algorithm (see wiki article).

  • there are two different implementation of MSER: one for grey image, one for color image
  • the grey image algorithm is taken from: [157] ; the paper claims to be faster than union-find method; it actually get 1.5~2m/s on my centrino L7200 1.2GHz laptop.
  • the color image algorithm is taken from: [71] ; it should be much slower than grey image method ( 3~4 times ); the chi_table.h file is taken directly from paper's source code which is distributed under GPL.
  • (Python) A complete example showing the use of the MSER detector can be found at samples/python/mser.py

cv2.MSER_create()参数设置:
_delta 变化量q(i)
_min_area 修剪小于minarea的区域
_max_area 修剪大于maxArea的面积
_max_variation 修剪该区域的大小与其子区域相似
_min_diversity 对于彩色图像,追溯至截止MSER,其分集小于最小分集
_max_evolution 对于彩色图像,改进的步骤
_area_threshold 对于彩色图像,区域阈值导致重新初始化
_min_margin 对于彩色图像,忽略太小的边距
_edge_blur_size 边缘模糊的光圈大小

Full constructor for MSER detector.
Parameters
_delta it compares (sizei−sizei−delta)/sizei−delta
_min_area prune the area which smaller than minArea
_max_area prune the area which bigger than maxArea
_max_variation prune the area have similar size to its children
_min_diversity for color image, trace back to cut off mser with diversity less than min_diversity
_max_evolution for color image, the evolution steps
_area_threshold for color image, the area threshold to cause re-initialize
_min_margin for color image, ignore too small margin
_edge_blur_size for color image, the aperture size for edge blur

 cv::MSER::create(int  _delta = 5, 
                  int  _min_area = 60, 
                  int  _max_area = 14400, 
                  double _max_variation = 0.25, 
                  double  _min_diversity = .2, 
                  int  _max_evolution = 200, 
                  double  _area_threshold = 1.01, 
                  double _min_margin = 0.003, 
                  int _edge_blur_size = 5 )


 Python:
 retval =  cv.MSER_create([, _delta[, _min_area[, _max_area[, _max_variation[, _min_diversity[, _max_evolution[, _area_threshold[, _min_margin[, _edge_blur_size]]]]]]]]]) 

结果图:
image.png

注释:参考网站
参考官网:
https://docs.opencv.org/3.4/d3/d28/classcv_1_1MSER.html
https://blog.csdn.net/wsp_1138886114/article/details/100135824

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,723评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,485评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,998评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,323评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,355评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,079评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,389评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,019评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,519评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,971评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,100评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,738评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,293评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,289评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,517评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,547评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,834评论 2 345

推荐阅读更多精彩内容