二战周志华《机器学习》--特征选择

1、子集搜索与评价

我们能用很多属性描述一个西瓜,例如色泽、根蒂、敲声、纹理等等。但有经验的人往往只需看根蒂,听听敲声就可以知道是否是好瓜,换言之,对于一个学习任务来说,给定属性集,其中有些属性可能很关键,而另一些则可能没什么用,我们将这些属性称为特征的话,对当前学习任务有用的特征称为相关特征,而没什么用的特征称为无关特征,从给定的特征集选择特征的过程,称为特征选择

为什么要进行特征选择呢?有两个重要的原因,一个是避免维数灾难问题,另一个是,去除不相关的特征往往会降低学习任务的难度。

如果想从初始的特征集合中选取一个包含了所有重要信息的特征子集,若没有任何领域作为先验知识,那就只好遍历所有可能的子集了,然而这在计算上是不可能的,特征个数稍多就无法进行,可行的方法是产生一个候选子集,判断它的好坏,基于评价结果产生下一个候选特征子集。显然,有两个环节需要注意:如何根据评价结果选取下一个子集?如何评价特征子集的好坏?

将特征子集搜索机制和子集评价机制相结合,即可得到特征选择方法,例如将前向搜索与信息熵相结合,这显然与决策树算法非常相似。常见的特征选择方法大致可分为三类:过滤式、包裹式和嵌入式

2、过滤式选择

过滤式方法先对数据集进行特张选择,然后再训练学习器,特征选择过程与后续学习器无关,这相当于先用特征选择过程对初识特征进行“过滤”,然后再用过滤后的特征来训练模型。

Relief方法

3、包裹式选择

包裹式选择特征不考虑后续学习器不同,包裹式特征选择直接把最终将要使用的学习器的性能作为特征子集的评价准则。换言之,包裹式特征选择的目的就是为给定学习器选择最有利于其性能,量身定做的特征子集。包裹式选择比过滤式特征选择更好,但是另一方面,计算开销却要大得多。

LVW方法

4、嵌入式选择与L1正则化

嵌入式特征选择是将特征选择过程与学习器训练过程融为一体,两者在同一个优化过程中优化,即在学习器训练过程中自动进行了特征选择。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容