相似度计算方法:余弦相似度

最近接触到了推荐系统 ,在这个专题中,和大家分享一下自己的收获和心得。

基于用户的协同过滤算法

基于用户的协同过滤算法是推荐系统中最古老的算法,这个算法是1992年提出的,是用在了邮件过滤系统中,后面被用到了新闻过滤系统中。简单的来说,推荐系统中,基于用户的协同过滤就是,先找到与目标用户兴趣相似的用户,然后把这些用户喜欢的推荐给目标用户,先找到与目标用户兴趣相似的用户就是计算用户之间的相似度,今天主要就是讲讲用余弦相似度。

余弦相似度原理

用向量空间中的两个向量夹角的余弦值作为衡量两个个体间差异大小的度量,值越接近1,就说明夹角角度越接近0°,也就是两个向量越相似,就叫做余弦相似

余弦相似度公式

从书里面拿出来的公式,犹豫不会在线打数学公式,用手写的照片代替


书里面的公式

直接背书可能大家会迷糊,给大家来个通俗版的


通俗版公式

这个通俗版的大家应该可以看明白,下面就来说说推导公式的过程

推导公式的过程

如图a、b向量,夹角为θ


a、b两个向量

如图做辅助线c


辅助线c

现在的问题,就是求θ的余弦值,根据余弦定理,相比大家还记得吧
余弦定理

如图,把这个模型放到二维坐标系中


三角形的三个顶点坐标如图

那么,构建出来的三角形,三条边的边长如下:
a、b、c三条边的边长

把a、b、c边长带入余弦定理公式,计算过程如下:
推导过程如下

这是在二维坐标中,进行推导的,如果过程扩展到n位坐标系中,这个公式就是上面说通俗版公式

举个栗子

A用户对a、b、d物品有兴趣,B用户对a、c物品有兴趣,C用户对b、e物品有兴趣,D用户对c、d、e物品有兴趣,把这个转化成向量图,带入公式计算得出相似度,计算过程如图所示


计算过程

余弦相似度就为大家分享到这里,欢迎大家来交流,指出文中一些说错的地方,让我加深认识,愿大家没有bug,谢谢!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 193,968评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,682评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,254评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,074评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 60,964评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,055评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,484评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,170评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,433评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,512评论 2 308
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,296评论 1 325
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,184评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,545评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,880评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,150评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,437评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,630评论 2 335

推荐阅读更多精彩内容

  • 协同过滤和推荐系统几乎可以划等号,协同过滤的重点在于“协同”,所谓协同,也就是群体互帮互助,互相支持是集体智慧的体...
    andyham阅读 1,657评论 0 3
  • 在《程序员》12月刊A中,我们介绍了POI(兴趣点)的设计及其搜索。由于推荐系统是兴趣点系统的核心,所以接下来,我...
    阿七笔记阅读 4,627评论 0 8
  • 作者 | HCY崇远 01 前言 本文源自于前阵子连续更新的推荐系统系列,前段时间给朋友整理一个关于推荐系统相关的...
    daos阅读 5,624评论 0 77
  • 概述及标签体系搭建 1 概述 随着信息技术的迅速发展和信息内容的日益增长,“信息过载”问题愈来愈严重,愈发带来很大...
    JinkeyAI阅读 22,731评论 10 241
  • 这篇文章的技术难度会低一些,主要是对推荐系统所涉及到的各部分内容进行介绍,以及给出一些推荐系统的常用算法,比起技术...
    我偏笑_NSNirvana阅读 12,050评论 5 89