Flink 常见问题汇总-2(持续更新)

21、cep怎么老化

22、cep性能调优

23、Flink的背压,介绍一下Flink的反压,你们是如何监控和发现的呢。

Flink 没有使用任何复杂的机制来解决反压问题,Flink 在数据传输过程中使用了分布式阻塞队列。我们知道在一个阻塞队列中,当队列满了以后发送者会被天然阻塞住,这种阻塞功能相当于给这个阻塞队列提供了反压的能力。

当你的任务出现反压时,如果你的上游是类似 Kafka 的消息系统,很明显的表现就是消费速度变慢,Kafka 消息出现堆积。

如果你的业务对数据延迟要求并不高,那么反压其实并没有很大的影响。但是对于规模很大的集群中的大作业,反压会造成严重的“并发症”。首先任务状态会变得很大,因为数据大规模堆积在系统中,这些暂时不被处理的数据同样会被放到“状态”中。另外,Flink 会因为数据堆积和处理速度变慢导致 checkpoint 超时,而 checkpoint 是 Flink 保证数据一致性的关键所在,最终会导致数据的不一致发生。

Flink Web UI

Flink 的后台页面是我们发现反压问题的第一选择。Flink 的后台页面可以直观、清晰地看到当前作业的运行状态。

Web UI,需要注意的是,只有用户在访问点击某一个作业时,才会触发反压状态的计算。在默认的设置下,Flink的TaskManager会每隔50ms触发一次反压状态监测,共监测100次,并将计算结果反馈给JobManager,最后由JobManager进行反压比例的计算,然后进行展示。

在生产环境中Flink任务有反压有三种OK、LOW、HIGH

OK正常

LOW一般

HIGH高负载

24、Flink的CBO,逻辑执行计划和物理执行计划

Flink的优化执行其实是借鉴的数据库的优化器来生成的执行计划。

CBO,成本优化器,代价最小的执行计划就是最好的执行计划。传统的数据库,成本优化器做出最优化的执行计划是依据统计信息来计算的。Flink 的成本优化器也一样。Flink 在提供最终执行前,优化每个查询的执行逻辑和物理执行计划。这些优化工作是交给底层来完成的。根据查询成本执行进一步的优化,从而产生潜在的不同决策:如何排序连接,执行哪种类型的连接,并行度等等。

25、Flink中数据聚合,不使用窗口怎么实现聚合

valueState 用于保存单个值

ListState 用于保存list元素

MapState 用于保存一组键值对

ReducingState 提供了和ListState相同的方法,返回一个ReducingFunction聚合后的值。

AggregatingState和 ReducingState类似,返回一个AggregatingState内部聚合后的值

26、Flink中state有哪几种存储方式

Memery、RocksDB、HDFS

27、Flink 异常数据怎么处理

异常数据在我们的场景中,一般分为缺失字段和异常值数据。

异常值:例如宝宝的年龄的数据,例如对于母婴行业来讲,一个宝宝的年龄是一个至关重要的数据,可以说是最重要的,因为宝宝大于3岁几乎就不会在母婴上面购买物品。像我们的有当日、未知、以及很久的时间。这样都属于异常字段,这些数据我们会展示出来给店长和区域经理看,让他们知道多少个年龄是不准的。如果要处理的话,可以根据他购买的时间来进行实时矫正,例如孕妇服装、奶粉的段位、纸尿裤的大小,以及奶嘴啊一些能够区分年龄段的来进行处理。我们并没有实时处理这些数据,我们会有一个底层的策略任务夜维去跑,一个星期跑一次。

缺失字段:例如有的字段真的缺失的很厉害,能修补就修补。不能修补就放弃,就像上家公司中的新闻推荐过滤器。

28、Flink 监控你们怎么做的

1.我们监控了Flink的任务是否停止

2.我们监控了Flink的Kafka的LAG

3.我们会进行实时数据对账,例如销售额。

29、Flink 有数据丢失的可能吗

Flink有三种数据消费语义:

1.At Most Once 最多消费一次 发生故障有可能丢失

2.At Least Once 最少一次 发生故障有可能重复

3.Exactly-Once 精确一次 如果产生故障,也能保证数据不丢失不重复。

flink 新版本已经不提供 At-Most-Once 语义。

30、Flink interval join 你能简单的写一写吗

DataStream keyed1 = ds1.keyBy(o -> o.getString("key"))DataStream keyed2 = ds2.keyBy(o -> o.getString("key"))//右边时间戳-5s<=左边流时间戳<=右边时间戳-1skeyed1.intervalJoin(keyed2).between(Time.milliseconds(-5), Time.milliseconds(5))

31、Flink 提交的时候 并行度如何制定,以及资源如何配置

并行度根据kafka topic的并行度,一个并行度3个G

32、Flink的boardcast join 的原理是什么

利用 broadcast State 将维度数据流广播到下游所有 task 中。这个 broadcast 的流可以与我们的事件流进行 connect,然后在后续的 process 算子中进行关联操作即可。


33、flink的source端断了,比如kafka出故障,没有数据发过来,怎么处理?

会有报警,监控的kafka偏移量也就是LAG。


34、flink有什么常用的流的API?

window join 啊 cogroup 啊 map flatmap,async io 等


35、flink的水位线,你了解吗,能简单介绍一下吗

Flink 的watermark是一种延迟触发的机制。

一般watermark是和window结合来进行处理乱序数据的,Watermark最根本就是一个时间机制,例如我设置最大乱序时间为2s,窗口时间为5秒,那么就是当事件时间大于7s的时候会触发窗口。当然假如有数据分区的情况下,例如kafka中接入watermake的话,那么watermake是会流动的,取的是所有分区中最小的watermake进行流动,因为只有最小的能够保证,之前的数据都已经来到了,可以触发计算了。


36、Flink怎么维护Checkpoint?在HDFS上存储的话会有小文件吗

默认情况下,如果设置了Checkpoint选项,Flink只保留最近成功生成的1个Checkpoint。当Flink程序失败时,可以从最近的这个Checkpoint来进行恢复。但是,如果我们希望保留多个Checkpoint,并能够根据实际需要选择其中一个进行恢复,这样会更加灵活。Flink支持保留多个Checkpoint,需要在Flink的配置文件conf/flink-conf.yaml中,添加如下配置指定最多需要保存Checkpoint的个数。

关于小文件问题可以参考代达罗斯之殇-大数据领域小文件问题解决攻略


37、Spark和Flink的序列化,有什么区别吗?

Spark 默认使用的是 Java序列化机制,同时还有优化的机制,也就是kryo

Flink是自己实现的序列化机制,也就是TypeInformation


38、Flink是怎么处理迟到数据的?但是实际开发中不能有数据迟到,怎么做?

Flink 的watermark是一种延迟触发的机制。

一般watermark是和window结合来进行处理乱序数据的,Watermark最根本就是一个时间机制,例如我设置最大乱序时间为2s,窗口时间为5秒,那么就是当事件时间大于7s的时候会触发窗口。当然假如有数据分区的情况下,例如kafka中接入watermake的话,那么watermake是会流动的,取的是所有分区中最小的watermake进行流动,因为只有最小的能够保证,之前的数据都已经来到了,可以触发计算了。


39、画出flink执行时的流程图。


40、Flink分区分配策略


41、Flink关闭后状态端数据恢复得慢怎么办?


42、了解flink的savepoint吗?讲一下savepoint和checkpoint的不同和各有什么优势


43、flink的状态后端机制

Flink的状态后端是Flink在做checkpoint的时候将状态快照持久化,有三种状态后端 Memery、HDFS、RocksDB


44、flink中滑动窗口和滚动窗口的区别,实际应用的窗口是哪种?用的是窗口长度和滑动步长是多少?


45、用flink能替代spark的批处理功能吗

Flink 未来的目标是批处理和流处理一体化,因为批处理的数据集你可以理解为是一个有限的数据流。Flink 在批出理方面,尤其是在今年 Flink 1.9 Release 之后,合入大量在 Hive 方面的功能,你可以使用 Flink SQL 来读取 Hive 中的元数据和数据集,并且使用 Flink SQL 对其进行逻辑加工,不过目前 Flink 在批处理方面的性能,还是干不过 Spark的。

目前看来,Flink 在批处理方面还有很多内容要做,当然,如果是实时计算引擎的引入,Flink 当然是首选。


46、flink计算的UV你们是如何设置状态后端保存数据

可以使用布隆过滤器。


47、sparkstreaming和flink在执行任务上有啥区别,不是简单的流处理和微批,sparkstreaming提交任务是分解成stage,flink是转换graph,有啥区别?


48、flink把streamgraph转化成jobGraph是在哪个阶段?


49、Flink中的watermark除了处理乱序数据还有其他作用吗?

还有kafka数据顺序消费的处理。


50、flink你一般设置水位线设置多少

我们之前设置的水位线是6s

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352

推荐阅读更多精彩内容