1. 面向对象特征
- 抽象:抽象是将一类对象的共同特征总结出来构造类的过程,包括数据抽象和行为抽象两方面。抽象只关注对象有哪些属性和行为,并不关注这些行为的细节是什么。
- 继承:继承是从已有类得到继承信息创建新类的过程。提供继承信息的类被称为父类(超类、基类);得到继承信息的类被称为子类(派生类)。继承让变化中的软件系统有了一定的延续性,同时继承也是封装程序中可变因素的重要手段(如果不能理解请阅读阎宏博士的《Java与模式》或《设计模式精解》中关于桥梁模式的部分)。
- 封装:通常认为封装是把数据和操作数据的方法绑定起来,对数据的访问只能通过已定义的接口。面向对象的本质就是将现实世界描绘成一系列完全自治、封闭的对象。我们在类中编写的方法就是对实现细节的一种封装;我们编写一个类就是对数据和数据操作的封装。可以说,封装就是隐藏一切可隐藏的东西,只向外界提供最简单的编程接口(可以想想普通洗衣机和全自动洗衣机的差别,明显全自动洗衣机封装更好因此操作起来更简单;我们现在使用的智能手机也是封装得足够好的,因为几个按键就搞定了所有的事情)。
- 多态:多态性是指允许不同子类型的对象对同一消息作出不同的响应。简单的说就是用同样的对象引用调用同样的方法但是做了不同的事情。多态性分为编译时的多态性和运行时的多态性。如果将对象的方法视为对象向外界提供的服务,那么运行时的多态性可以解释为:当A系统访问B系统提供的服务时,B系统有多种提供服务的方式,但一切对A系统来说都是透明的(就像电动剃须刀是A系统,它的供电系统是B系统,B系统可以使用电池供电或者用交流电,甚至还有可能是太阳能,A系统只会通过B类对象调用供电的方法,但并不知道供电系统的底层实现是什么,究竟通过何种方式获得了动力)。方法重载(overload)实现的是编译时的多态性(也称为前绑定),而方法重写(override)实现的是运行时的多态性(也称为后绑定,覆盖)。运行时的多态是面向对象最精髓的东西,要实现多态需要做两件事:1). 方法重写(子类继承父类并重写父类中已有的或抽象的方法);2). 对象造型(用父类型引用引用子类型对象,这样同样的引用调用同样的方法就会根据子类对象的不同而表现出不同的行为)。
2. 访问修饰符public,private,protected以及default区别
修饰符 | 当前类 | 同 包 | 子 类 | 其他包 |
---|---|---|---|---|
public | √ | √ | √ | √ |
protected | √ | √ | √ | × |
default | √ | √ | × | × |
private | √ | × | × | × |
3. 数据类型
Java中的基本数据类型只有8个:byte、short、int、long、float、double、char、boolean;除了基本类型(primitive type),剩下的都是引用类型(reference type),Java 5以后引入的枚举类型也算是一种比较特殊的引用类型。
4. 赋值经典题
float f=3.4 是否正确?
不正确。3.4是双精度数,将双精度型(double)赋值给浮点型(float)属于下转型(down-casting,也称为窄化)会造成精度损失,因此需要强制类型转换float f =(float)3.4; 或者写成float f =3.4F
short s1 = 1; s1 = s1 + 1有错吗?short s1 = 1; s1 += 1有错吗?
答:对于short s1 = 1; s1 = s1 + 1;由于1是int类型,因此s1+1运算结果也是int 型,需要强制转换类型才能赋值给short型。而short s1 = 1; s1 += 1;可以正确编译,因为s1+= 1;相当于s1 = (short)(s1 + 1);其中有隐含的强制类型转换。
5. 包装类
Java是一个近乎纯洁的面向对象编程语言,但是为了编程的方便还是引入了基本数据类型,但是为了能够将这些基本数据类型当成对象操作,Java为每一个基本数据类型都引入了对应的包装类型(wrapper class)。
- 原始类型: boolean,char,byte,short,int,long,float,double
- 包装类型:Boolean,Character,Byte,Short,Integer,Long,Float,Double
例题1:
class AutoUnboxingTest {
public static void main(String[] args) {
Integer a = new Integer(3);
Integer b = 3; // 将3自动装箱成Integer类型
int c = 3;
System.out.println(a == b); // false 两个引用没有引用同一对象
System.out.println(a == c); // true a自动拆箱成int类型再和c比较
}
}
例题2:
public class Test03 {
public static void main(String[] args) {
Integer f1 = 100, f2 = 100, f3 = 150, f4 = 150;
System.out.println(f1 == f2);
System.out.println(f3 == f4);
}
}
如果不明就里很容易认为两个输出要么都是true要么都是false。首先需要注意的是f1、f2、f3、f4四个变量都是Integer对象引用,所以下面的==运算比较的不是值而是引用。装箱的本质是什么呢?当我们给一个Integer对象赋一个int值的时候,会调用Integer类的静态方法valueOf,如果看看valueOf的源代码就知道发生了什么。
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
IntegerCache是Integer的内部类,其代码如下所示:
/**
* Cache to support the object identity semantics of autoboxing for values between
* -128 and 127 (inclusive) as required by JLS.
*
* The cache is initialized on first usage. The size of the cache
* may be controlled by the {@code -XX:AutoBoxCacheMax=<size>} option.
* During VM initialization, java.lang.Integer.IntegerCache.high property
* may be set and saved in the private system properties in the
* sun.misc.VM class.
*/
private static class IntegerCache {
static final int low = -128;
static final int high;
static final Integer cache[];
static {
// high value may be configured by property
int h = 127;
String integerCacheHighPropValue =
sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
if (integerCacheHighPropValue != null) {
try {
int i = parseInt(integerCacheHighPropValue);
i = Math.max(i, 127);
// Maximum array size is Integer.MAX_VALUE
h = Math.min(i, Integer.MAX_VALUE - (-low) -1);
} catch( NumberFormatException nfe) {
// If the property cannot be parsed into an int, ignore it.
}
}
high = h;
cache = new Integer[(high - low) + 1];
int j = low;
for(int k = 0; k < cache.length; k++)
cache[k] = new Integer(j++);
// range [-128, 127] must be interned (JLS7 5.1.7)
assert IntegerCache.high >= 127;
}
private IntegerCache() {}
如果整型字面量的值在-128到127之间,那么不会new新的Integer对象,而是直接引用常量池中的Integer对象,所以上面的面试题中f1==f2的结果是true,而f3==f4的结果是false。
6. &和&&区别
&运算符有两种用法:(1)按位与;(2)逻辑与。
&&运算符是短路与运算。
逻辑与跟短路与的差别是非常巨大的,虽然二者都要求运算符左右两端的布尔值都是true整个表达式的值才是true。&&之所以称为短路运算是因为,如果&&左边的表达式的值是false,右边的表达式会被直接短路掉,不会进行运算。很多时候我们可能都需要用&&而不是&,
例如在验证用户登录时判定用户名不是null而且不是空字符串,应当写为:username != null &&!username.equals(""),二者的顺序不能交换,更不能用&运算符,因为第一个条件如果不成立,根本不能进行字符串的equals比较,否则会产生NullPointerException异常。
注意:逻辑或运算符(|)和短路或运算符(||)的差别也是如此。
7. 栈、堆和方法区
- 通常我们定义一个基本数据类型的变量,一个对象的引用,还有就是函数调用的现场保存都使用JVM中的栈空间;
- 通过new关键字和构造器创建的对象则放在堆空间,堆是垃圾收集器管理的主要区域,由于现在的垃圾收集器都采用分代收集算法,所以堆空间还可以细分为新生代和老生代,再具体一点可以分为Eden、Survivor(又可分为From Survivor和To Survivor)、Tenured;
- 方法区和堆都是各个线程共享的内存区域,用于存储已经被JVM加载的类信息、常量、静态变量、JIT编译器编译后的代码等数据;程序中的字面量(literal)如直接书写的100、"hello"和常量都是放在常量池中,常量池是方法区的一部分,。栈空间操作起来最快但是栈很小,通常大量的对象都是放在堆空间,栈和堆的大小都可以通过JVM的启动参数来进行调整,栈空间用光了会引发StackOverflowError,而堆和常量池空间不足则会引发OutOfMemoryError。
8. 构造器
构造器不能被继承,因此不能被重写,但可以被重载。
9. String, StringBuilder, StringBuffer
Java平台提供了两种类型的字符串:String和StringBuffer/StringBuilder,它们可以储存和操作字符串。其中
- String是只读字符串,也就意味着String引用的字符串内容是不能被改变的。
- StringBuffer/StringBuilder类表示的字符串对象可以直接进行修改。StringBuilder是Java 5中引入的,它和StringBuffer的方法完全相同,区别在于它是在单线程环境下使用的,因为它的所有方面都没有被synchronized修饰,因此它的效率也比StringBuffer要高。
- String对象的intern()方法会得到字符串对象在常量池中对应的版本的引用(如果常量池中有一个字符串与String对象的equals结果是true),如果常量池中没有对应的字符串,则该字符串将被添加到常量池中,然后返回常量池中字符串的引用;
10. 重载(Overload)和重写(Override)的区别
方法的重载和重写都是实现多态的方式,区别在于前者实现的是编译时的多态性,而后者实现的是运行时的多态性。重载发生在一个类中,同名的方法如果有不同的参数列表(参数类型不同、参数个数不同或者二者都不同)则视为重载;重写发生在子类与父类之间
【重写】两同两小一大原则
两同:方法名相同;形参列表相同
两小:子类方法返回值类型应比父类方法返回值类型更小或相等;
子类方法声明抛出的异常应比父类方法声明抛出的异常类更小或相等
一大:子类权限比父类大或相等
11. JVM加载class文件原理机制
JVM中类的装载是由类加载器(ClassLoader)和它的子类来实现的,Java中的类加载器是一个重要的Java运行时系统组件,它负责在运行时查找和装入类文件中的类。
由于Java的跨平台性,经过编译的Java源程序并不是一个可执行程序,而是一个或多个类文件。当Java程序需要使用某个类时,JVM会确保这个类已经被加载、连接(验证、准备和解析)和初始化。
- 类的加载是指把类的.class文件中的数据读入到内存中,通常是创建一个字节数组读入.class文件,然后产生与所加载类对应的Class对象。加载完成后,Class对象还不完整,所以此时的类还不可用。
- 当类被加载后就进入连接阶段,这一阶段包括验证、准备(为静态变量分配内存并设置默认的初始值)和解析(将符号引用替换为直接引用)三个步骤。
- 最后JVM对类进行初始化,包括:1)如果类存在直接的父类并且这个类还没有被初始化,那么就先初始化父类;2)如果类中存在初始化语句,就依次执行这些初始化语句。
类的加载是由类加载器完成的,类加载器包括:根加载器(BootStrap)、扩展加载器(Extension)、系统加载器(System)和用户自定义类加载器(java.lang.ClassLoader的子类)。从Java 2(JDK 1.2)开始,类加载过程采取了父亲委托机制(PDM)。PDM更好的保证了Java平台的安全性,在该机制中,JVM自带的Bootstrap是根加载器,其他的加载器都有且仅有一个父类加载器。类的加载首先请求父类加载器加载,父类加载器无能为力时才由其子类加载器自行加载。JVM不会向Java程序提供对Bootstrap的引用。下面是关于几个类加载器的说明:
- Bootstrap:一般用本地代码实现,负责加载JVM基础核心类库(rt.jar);
- Extension:从java.ext.dirs系统属性所指定的目录中加载类库,它的父加载器是Bootstrap;
- System:又叫应用类加载器,其父类是Extension。它是应用最广泛的类加载器。它从环境变量classpath或者系统属性java.class.path所指定的目录中记载类,是用户自定义加载器的默认父加载器。
12. 抽象类和接口异同
- 抽象类和接口都不能够实例化,但可以定义抽象类和接口类型的引用。一个类如果继承了某个抽象类或者实现了某个接口都需要对其中的抽象方法全部进行实现,否则该类仍然需要被声明为抽象类。
- 接口比抽象类更加抽象,因为抽象类中可以定义构造器,可以有抽象方法和具体方法,而接口中不能定义构造器而且其中的方法全部都是抽象方法。抽象类中的成员可以是private、默认、protected、public的,而接口中的成员全都是public的。抽象类中可以定义成员变量,而接口中定义的成员变量实际上都是常量。有抽象方法的类必须被声明为抽象类,而抽象类未必要有抽象方法。
13. 内部类
- 为什么使用内部类?
使用内部类最吸引人的原因是:每个内部类都能独立地继承一个(接口的)实现,所以无论外围类是否已经继承了某个(接口的)实现,对于内部类都没有影响1 - 使用内部类最大的优点就在于它能够非常好的解决多重继承的问题,使用内部类还能够为我们带来如下特性:
- 内部类可以用多个实例,每个实例都有自己的状态信息,并且与其他外围对象的信息相互独。
- 在单个外围类中,可以让多个内部类以不同的方式实现同一个接口,或者继承同一个类。
- 创建内部类对象的时刻并不依赖于外围类对象的创建。
- 内部类并没有令人迷惑的“is-a”关系,他就是一个独立的实体。
- 内部类提供了更好的封装,除了该外围类,其他类都不能访问。
- 内部类分类:
- 成员内部类:
public class Outer{
private int age = 99;
String name = "Coco";
public class Inner{
String name = "Jayden";
public void show(){
System.out.println(Outer.this.name);
System.out.println(name);
System.out.println(age);
}
}
public Inner getInnerClass(){
return new Inner();
}
public static void main(String[] args){
Outer o = new Outer();
Inner in = o.new Inner();
in.show();
}
}
成员内部类中不能存在任何 static 的变量和方法,可以定义常量:
因为非静态内部类是要依赖于外部类的实例,而静态变量和方法是不依赖于对象的,仅与类相关,简而言之:在加载静态域时,根本没有外部类,所在在非静态内部类中不能定义静态域或方法,编译不通过;非静态内部类的作用域是实例级别;常量是在编译器就确定的,放到所谓的常量池了
★★友情提示:
a.外部类是不能直接使用内部类的成员和方法的,可先创建内部类的对象,然后通过内部类的对象来访问其成员变量和方法;
b.如果外部类和内部类具有相同的成员变量或方法,内部类默认访问自己的成员变量或方法,如果要访问外部类的成员变量,可以使用 this 关键字,如:Outer.this.name
- 静态内部类: 是 static 修饰的内部类
a.静态内部类不能直接访问外部类的非静态成员,但可以通过 new 外部类().成员 的方式访问
b.如果外部类的静态成员与内部类的成员名称相同,可通过“类名.静态成员”访问外部类的静态成员;如果外部类的静态成员与内部类的成员名称不相同,则可通过“成员名”直接调用外部类的静态成员
c.创建静态内部类的对象时,不需要外部类的对象,可以直接创建 内部类 对象名 = new 内部类();
public class Outer{
private int age = 99;
static String name = "Coco";
public static class Inner{
String name = "Jayden";
public void show(){
System.out.println(Outer.name);
System.out.println(name);
}
}
public static void main(String[] args){
Inner i = new Inner();
i.show();
}
}
3.方法内部类:访问仅限于方法内或者该作用域内
a.局部内部类就像是方法里面的一个局部变量一样,是不能有 public、protected、private 以及 static 修饰符的
b.只能访问方法中定义的 final 类型的局部变量
因为:当方法被调用运行完毕之后,局部变量就已消亡了。但内部类对象可能还存在,直到没有被引用时才会消亡。此时就会出现一种情况,就是内部类要访问一个不存在的局部变量;==>使用final修饰符不仅会保持对象的引用不会改变,而且编译器还会持续维护这个对象在回调方法中的生命周期.局部内部类并不是直接调用方法传进来的参数,而是内部类将传进来的参数通过自己的构造器备份到了自己的内部,自己内部的方法调用的实际是自己的属性而不是外部类方法的参数;
/*
使用的形参为何要为 final???
在内部类中的属性和外部方法的参数两者从外表上看是同一个东西,但实际上却不是,所以他们两者是可以任意变化的,也就是说在内部类中对属性的改变并不会影响到外部的形参,这从程序员的角度来看这是不可行的,毕竟站在程序的角度来看这两个根本就是同一个,如果内部类改变了,而外部方法的形参却没有改变这是难以理解和不可接受的,所以为了保持参数的一致性,就规定使用 final 来避免形参的不改变
*/
public class Outer{
public void Show(){
final int a = 25;
int b = 13;
class Inner{
int c = 2;
public void print(){
System.out.println("访问外部类:" + a);
System.out.println("访问内部类:" + c);
}
}
Inner i = new Inner();
i.print();
}
public static void main(String[] args){
Outer o = new Outer();
o.show();
}
}
(3).注意:在JDK8版本之中,方法内部类中调用方法中的局部变量,可以不需要修饰为 final,匿名内部类也是一样的,主要是JDK8之后增加了 Effectively final 功能
http://docs.oracle.com/javase/tutorial/java/javaOO/localclasses.html
反编译jdk8编译之后的class文件,发现内部类引用外部的局部变量都是 final 修饰的
4.匿名内部类:
创建格式为:
new 父类构造器(参数列表)|实现接口(){
//匿名内部类的类体实现
}
a. 匿名内部类是直接使用 new 来生成一个对象的引用;
b. 创建匿名内部类时它会立即创建一个该类的实例,该类的定义会立即消失,所以匿名内部类是不能够被重复使用;
c.使用匿名内部类时,我们必须是继承一个类或者实现一个接口,但是两者不可兼得,同时也只能继承一个类或者实现一个接口;
d.匿名内部类中是不能定义构造函数的,匿名内部类中不能存在任何的静态成员变量和静态方法;
e.匿名内部类中不能存在任何的静态成员变量和静态方法,匿名内部类不能是抽象的,它必须要实现继承的类或者实现的接口的所有抽象方法
f.匿名内部类初始化:使用构造代码块,利用构造代码块能够达到为匿名内部类创建一个构造器的效果
public class OuterClass {
public InnerClass getInnerClass(final int num,String str2){
return new InnerClass(){
int number = num + 3;
public int getNumber(){
return number;
}
}; /* 注意:分号不能省 */
}
public static void main(String[] args) {
OuterClass out = new OuterClass();
InnerClass inner = out.getInnerClass(2, "chenssy");
System.out.println(inner.getNumber());
}
}
interface InnerClass {
int getNumber();
}
14. 内存泄漏
理论上Java因为有垃圾回收机制(GC)不会存在内存泄露问题(这也是Java被广泛使用于服务器端编程的一个重要原因);然而在实际开发中,可能会存在无用但可达的对象,这些对象不能被GC回收,因此也会导致内存泄露的发生。例如Hibernate的Session(一级缓存)中的对象属于持久态,垃圾回收器是不会回收这些对象的,然而这些对象中可能存在无用的垃圾对象,如果不及时关闭(close)或清空(flush)一级缓存就可能导致内存泄露。
15. Error和Exception
Error表示系统级的错误和程序不必处理的异常,是恢复不是不可能但很困难的情况下的一种严重问题;比如内存溢出,不可能指望程序能处理这样的情况;
Exception表示需要捕捉或者需要程序进行处理的异常,是一种设计或实现问题;也就是说,它表示如果程序运行正常,从不会发生的情况。
*RuntimeException运行时异常表示虚拟机的通常操作中可能遇到的异常,是一种常见运行错误,只要程序设计得没有问题通常就不会发生。
常见:
ArithmeticException(算术异常)
ClassCastException (类转换异常)
IllegalArgumentException (非法参数异常)
IndexOutOfBoundsException (下标越界异常)
NullPointerException (空指针异常)
SecurityException (安全异常)受检异常跟程序运行的上下文环境有关,即使程序设计无误,仍然可能因使用的问题而引发。Java编译器要求方法必须声明抛出可能发生的受检异常,但是并不要求必须声明抛出未被捕获的运行时异常。异常和继承一样,是面向对象程序设计中经常被滥用的东西,在Effective Java中对异常的使用给出了以下指导原则:
- 不要将异常处理用于正常的控制流(设计良好的API不应该强迫它的调用者为了正常的控制流而使用异常)
- 对可以恢复的情况使用受检异常,对编程错误使用运行时异常
- 避免不必要的使用受检异常(可以通过一些状态检测手段来避免异常的发生)
- 优先使用标准的异常
- 每个方法抛出的异常都要有文档
- 保持异常的原子性
- 不要在catch中忽略掉捕获到的异常
16. ArrayList、Vector、LinkedList的存储性能和特性
- ArrayList 和Vector都是使用数组方式存储数据,此数组元素数大于实际存储的数据以便增加和插入元素,它们都允许直接按序号索引元素,但是插入元素要涉及数组元素移动等内存操作,所以索引数据快而插入数据慢,Vector中的方法由于添加了synchronized修饰,因此Vector是线程安全的容器,但性能上较ArrayList差,因此已经是Java中的遗留容器。
- LinkedList使用双向链表实现存储(将内存中零散的内存单元通过附加的引用关联起来,形成一个可以按序号索引的线性结构,这种链式存储方式与数组的连续存储方式相比,内存的利用率更高),按序号索引数据需要进行前向或后向遍历,但是插入数据时只需要记录本项的前后项即可,所以插入速度较快。
- 由于ArrayList和LinkedListed都是非线程安全的,如果遇到多个线程操作同一个容器的场景,则可以通过工具类Collections中的synchronizedList方法将其转换成线程安全的容器后再使用(这是对装潢模式的应用,将已有对象传入另一个类的构造器中创建新的对象来增强实现)。
17. Collection和Collections的区别?
Collection是一个接口,它是Set、List等容器的父接口;Collections是个一个工具类,提供了一系列的静态方法来辅助容器操作,这些方法包括对容器的搜索、排序、线程安全化等等。
18. TreeMap和TreeSet在排序时如何比较元素?Collections工具类中的sort()方法如何比较元素?
- TreeSet要求存放的对象所属的类必须实现Comparable接口,该接口提供了比较元素的compareTo()方法,当插入元素时会回调该方法比较元素的大小。TreeMap要求存放的键值对映射的键必须实现Comparable接口从而根据键对元素进行排序。
- Collections工具类的sort方法有两种重载的形式,第一种要求传入的待排序容器中存放的对象比较实现Comparable接口以实现元素的比较;第二种不强制性的要求容器中的元素必须可比较,但是要求传入第二个参数,参数是Comparator接口的子类型(需要重写compare方法实现元素的比较),相当于一个临时定义的排序规则,其实就是通过接口注入比较元素大小的算法,也是对回调模式的应用(Java中对函数式编程的支持)。
例子1:
public class Student implements Comparable<Student> {
private String name; // 姓名
private int age; // 年龄
public Student(String name, int age) {
this.name = name;
this.age = age;
}
@Override
public String toString() {
return "Student [name=" + name + ", age=" + age + "]";
}
@Override
public int compareTo(Student o) {
return this.age - o.age; // 比较年龄(年龄的升序)
}
}
例子2:
class Test02 {
public static void main(String[] args) {
List<Student> list = new ArrayList<>(); // Java 7的钻石语法(构造器后面的尖括号中不需要写类型)
list.add(new Student("Hao LUO", 33));
list.add(new Student("XJ WANG", 32));
list.add(new Student("Bruce LEE", 60));
list.add(new Student("Bob YANG", 22));
// 通过sort方法的第二个参数传入一个Comparator接口对象
// 相当于是传入一个比较对象大小的算法到sort方法中
// 由于Java中没有函数指针、仿函数、委托这样的概念
// 因此要将一个算法传入一个方法中唯一的选择就是通过接口回调
Collections.sort(list, new Comparator<Student> () {
@Override
public int compare(Student o1, Student o2) {
return o1.getName().compareTo(o2.getName()); // 比较学生姓名
}
});
for(Student stu : list) {
System.out.println(stu);
}
}
}
19. Thread类的sleep()方法和对象的wait()方法都可以让线程暂停执行,它们有什么区别?
- sleep()方法(休眠)是线程类(Thread)的静态方法,调用此方法会让当前线程暂停执行指定的时间,将执行机会(CPU)让给其他线程,但是对象的锁依然保持,因此休眠时间结束后会自动恢复
- wait()是Object类的方法,调用对象的wait()方法导致当前线程放弃对象的锁(线程暂停执行),进入对象的等待池(wait pool),只有调用对象的notify()方法(或notifyAll()方法)时才能唤醒等待池中的线程进入等锁池(lock pool),如果线程重新获得对象的锁就可以进入就绪状态。
20. 进程和线程区别
- 进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,是操作系统进行资源分配和调度的一个独立单位;
- 线程是进程的一个实体,是CPU调度和分派的基本单位,是比进程更小的能独立运行的基本单位。
- 线程的划分尺度小于进程,这使得多线程程序的并发性高;进程在执行时通常拥有独立的内存单元,而线程之间可以共享内存。使用多线程的编程通常能够带来更好的性能和用户体验,但是多线程的程序对于其他程序是不友好的,因为它可能占用了更多的CPU资源。当然,也不是线程越多,程序的性能就越好,因为线程之间的调度和切换也会浪费CPU时间。时下很时髦的Node.js就采用了单线程异步I/O的工作模式。
21. sleep()与yield()区别
- sleep()方法给其他线程运行机会时不考虑线程的优先级,因此会给低优先级的线程以运行的机会;yield()方法只会给相同优先级或更高优先级的线程以运行的机会;
- 线程执行sleep()方法后转入阻塞(blocked)状态,而执行yield()方法后转入就绪(ready)状态;
- sleep()方法声明抛出InterruptedException,而yield()方法没有声明任何异常;
- sleep()方法比yield()方法(跟操作系统CPU调度相关)具有更好的可移植性。
22.启动一个线程是调用run()还是start()方法
启动一个线程是调用start()方法,使线程所代表的虚拟处理机处于可运行状态,这意味着它可以由JVM 调度并执行,这并不意味着线程就会立即运行。run()方法是线程启动后要进行回调(callback)的方法。
23.线程池
在面向对象编程中,创建和销毁对象是很费时间的,因为创建一个对象要获取内存资源或者其它更多资源。在Java中更是如此,虚拟机将试图跟踪每一个对象,以便能够在对象销毁后进行垃圾回收。所以提高服务程序效率的一个手段就是尽可能减少创建和销毁对象的次数,特别是一些很耗资源的对象创建和销毁,这就是”池化资源”技术产生的原因。线程池顾名思义就是事先创建若干个可执行的线程放入一个池(容器)中,需要的时候从池中获取线程不用自行创建,使用完毕不需要销毁线程而是放回池中,从而减少创建和销毁线程对象的开销。
Java 5+中的Executor接口定义一个执行线程的工具。它的子类型即线程池接口是ExecutorService。要配置一个线程池是比较复杂的,尤其是对于线程池的原理不是很清楚的情况下,因此在工具类Executors面提供了一些静态工厂方法,生成一些常用的线程池,如下所示:
- newSingleThreadExecutor:创建一个单线程的线程池。这个线程池只有一个线程在工作,也就是相当于单线程串行执行所有任务。如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它。此线程池保证所有任务的执行顺序按照任务的提交顺序执行。
- newFixedThreadPool:创建固定大小的线程池。每次提交一个任务就创建一个线程,直到线程达到线程池的最大大小。线程池的大小一旦达到最大值就会保持不变,如果某个线程因为执行异常而结束,那么线程池会补充一个新线程。
- newCachedThreadPool:创建一个可缓存的线程池。如果线程池的大小超过了处理任务所需要的线程,那么就会回收部分空闲(60秒不执行任务)的线程,当任务数增加时,此线程池又可以智能的添加新线程来处理任务。此线程池不会对线程池大小做限制,线程池大小完全依赖于操作系统(或者说JVM)能够创建的最大线程大小。
- newScheduledThreadPool:创建一个大小无限的线程池。此线程池支持定时以及周期性执行任务的需求。
24.线程状态转换
25.简述synchronized 和java.util.concurrent.locks.Lock的异同?
答:Lock是Java 5以后引入的新的API,和关键字synchronized相比主要相同点:Lock 能完成synchronized所实现的所有功能;
主要不同点:
- Lock有比synchronized更精确的线程语义和更好的性能,而且不强制性的要求一定要获得锁。
- synchronized会自动释放锁,而Lock一定要求程序员手工释放,并且最好在finally 块中释放(这是释放外部资源的最好的地方)。
26. Statement和PreparedStatement有什么区别?哪个性能更好?
答:与Statement相比,PreparedStatement接口代表预编译的语句,它主要的优势在于:
- 可以减少SQL的编译错误并增加SQL的安全性(减少SQL注射攻击的可能性);
- PreparedStatement中的SQL语句是可以带参数的,避免了用字符串连接拼接SQL语句的麻烦和不安全;
- 当批量处理SQL或频繁执行相同的查询时,PreparedStatement有明显的性能上的优势,由于数据库可以将编译优化后的SQL语句缓存起来,下次执行相同结构的语句时就会很快(不用再次编译和生成执行计划)。
27.反射创建对象?
- 方法1:通过类对象调用newInstance()方法,例如:String.class.newInstance()
- 方法2:通过类对象的getConstructor()或getDeclaredConstructor()方法获得构造器(Constructor)对象并调用其newInstance()方法创建对象,例如:String.class.getConstructor(String.class).newInstance("Hello");