你敲键盘的声音,出卖了你,网友:像极了蔡徐坤

没想到吧,有一天你会被键盘出卖。

对,就是你每日敲击的键盘。当指尖在键盘上跳跃,清脆的噼啪声此起彼落时,你输入的所有信息,包括那些情真意切的词句,那些不欲人知的心事,还有你的网络账户、银行密码……全都被它泄露了。

键盘,还能被黑???

今天,一个叫做Keytap的“黑科技”在国外火了。Keytap通过监听你敲击键盘的声音,就能还原出你输入的内容。

而且,只需要通过你电脑里的麦克风,就能完成声波采集的任务。

在一段发布于网上的Demo里,Keytap作者展示了在iMac+Filco机械键盘环境中,这个算法的优秀程度,请看:

四步偷窥大法

搭建这样一个“偷窥”打字的模型并不难,Keytap算法也已经开源了。跟着做,只要如下四步:

一是,收集训练数据;

二是,搭建预测模型,学习一下数据;

三是,检测出有人在敲键盘;

四是,检测出ta在打什么字。

收集训练数据

Keytap收集数据时,只保留每次敲击前后75-100毫秒的音频。

这就是说,并非连续取样,两次敲击之间有一部分是忽略的。

这种做法是会牺牲一些信息量的。

从敲下按键,到程序受到指令,这之间有随机延时,与硬件和软件都有关系。

比如,按下g键的完整波形长这样:

看图像可以发现,敲击时出现了一个峰值,而再过大约150毫秒,又有一个按键被抬起的小峰值。

这样说来,100毫秒之外的信息也可能有用,不过这里为了简便就忽略了。

最终,收集到的数据长这样:

除此之外,局限性还在于,如果两次按键之间相隔不久,后者落在前者的后75毫秒之内,那数据可能就有些混杂了。

搭个预测模型

这个部分是最能发挥创造力的部分。Keytap用了一个非常简单的方法,分为三步:

1.把收集到的波形的峰值对齐。这样可以避免延时带来的影响。

2.基于相似度指标 (Similarity Metric) ,更精细地对齐波形。

需要更精确的对齐方法,是因为有时候峰值未必是最好的判断依据。

那么,可不可以跳过峰值对齐呢?

之所以第2步之前要先做第1步,是因为相似度指标的计算很占CPU。而第1步可以有效缩小对齐窗口 (Alignment Window) ,减少计算量。

3.对齐后,做简单加权平均。权重也是用相似度指标来定义的。

完成第3步之后,每一个按键都会得出一个平均波形 (a Single Averaged Waveform) ,用来和实时捕捉的数据做比对

Keytap用的相似度指标互相关(Cross Correlation, CC) ,长这样:

这里,Ai和Bi都是某个按键的波形样本,比对就在它们之间进行。CC值越高,表示两者越相似。

当然,也可以用其他相似度指标来做。

顺便一说,两次按键之间的间隔时长,其实也可以用来预测的,但开发者怕麻烦就省略了,勇敢的少年可以去源代码基础上自行实验。

检测出在敲键盘

平均波形和比对标准都有了,可是麦克风实时收录的声音连绵不绝,该和哪一段来比对呢?

这就需要从连续的音频里,找到敲击键盘的声音。

Keytap用了一个非常简单的阈值方法,在原始音频里监测敲击动作:

按下去的时候,会有一个大大的峰值,这就是侦测目标。

不过,这个阈值不是固定的,是自适应 (Adaptive) 的:根据过去数百毫秒之内的平均样本强度来调整的。

检测打了什么字

当系统发现有人在敲键盘,就用相似度指标来测到底按了哪个键,CC值最高的就是答案。方法就像上文说的那样。

现在,代码实现已经开源了,传送门见文底。

不过,作者在博客中说,这个方法目前只有机械键盘适用。

“薯片间谍”

听音识字的研究不止这一个,去年一篇Don’t Skype & Type!Acoustic Eavesdropping in Voice-Over-IP的论文,也提出了Skype & Type(S&T)键盘声音识别算法。

和这个研究类似,根据网络电话Skepe中传出的打字按键声音,在了解了被测者的打字风格和设备类型后,系统能复原敲下了什么。

整个算法搭建过程只有三步:收集信息、数据处理与数据分类。

研究人员事先收集语音电话中键盘敲击声,将这些声音分为两类,即按下声与松开回弹声,随后提取它们的特征。

当听到键盘声时,算法先识别设备类型,再去识别为键盘中的哪个键。和Keytap不同的是,S&T也能适用于非机械键盘了。

研究人员表示,在预测的最可能的前5个字母中,包含正确字母的准确率达到了91.7%。


推测人类讲了什么,AI需要甚至只是一包薯片

什么,觉得太离谱了?Naive。

MIT、微软和Adobe开发的这种看似天方夜谭的算法,只需高速相机透过隔音玻璃,拍摄出薯片袋的振动,算法就会判断说话人是男是女,甚至还原出说了什么。

对,就是这种生活中随处可见的薯片

研究人员表示,声音传播时触碰到周围的物体,会震动形成一股微妙的视觉信号,肉眼无法识别,但高速相机(每秒帧数2000~6000 FPS)可以敏锐捕捉。

除了薯片袋子,研究人员还用铝箔、水杯甚至植物盆栽进行了试验,效果“一如既往的好”。

欢迎3-5年的java开发者,这里是程序员秘密聚集地, 同道中人居多,更有价值1万元的免费资料限时领取(限前20位)点击了解更多免费领取

— 

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345

推荐阅读更多精彩内容