9 ta-lib之真实波幅 ATR

真实波幅(ATR average true range)主要应用于了解股价的震荡幅度和节奏,在窄幅整理行情中用于寻找突破时机。通常情况下股价的波动幅度会保持在一定常态下,但是如果有主力资金进出时,股价波幅往往会加剧。另外,在股价横盘整理、波幅减少到极点时,也往往会产生变盘行情。真实波幅(ATR)正是基于这种原理而设计的指标。使用Talib中的ATR函数进行回测。
计算方法:
1.TR=∣最高价-最低价∣和∣最高价-昨收∣和∣昨收-最低价∣的最大值
2.真实波幅(ATR)=TR的N日简单移动平均
3.参数N设置为14日
使用方法:
如果当前价格比之前的价格高一个ATR的涨幅,买入股票
如果之前的价格比当前价格高一个ATR的涨幅,卖出股票

import pandas as pd
import numpy as np
import talib as ta
import tushare as ts
import matplotlib.pyplot as plt
from matplotlib import rc
rc('mathtext', default='regular')
import seaborn as sns
sns.set_style('white')
from matplotlib import dates
import matplotlib as mpl
%matplotlib inline
myfont =mpl.font_manager.FontProperties(fname=r"c:\windows\fonts\simsun.ttc",size=14)
plt.rcParams["figure.figsize"] = (20,10)


dw = ts.get_k_data("000001")
dw = dw[300:]
dw.index = range(len(dw))
dw['atr'] = ta.ATR(dw.high.values,dw.low.values,dw.close.values, timeperiod=14)
dw['di'] = dw.close.diff(-1)
dw = dw[14:]
dw.index = range(len(dw))
fig = plt.figure(figsize=(20,10))
fig.set_tight_layout(True)
ax1 = fig.add_subplot(111)
#fig.bar(dw.index, dw.volume, align='center', width=1.0)
ax1.plot(dw.index, dw.close, '-', color='g')

ax2 =ax1.twinx()
ax2.plot(dw.index, dw.atr, '-', color='r')
ax2.plot(dw.index, dw.di, '-.', color='b')

ax1.set_ylabel(u"股票价格(绿色)",fontproperties=myfont, fontsize=16)
ax2.set_ylabel(u"ATR参数",fontproperties=myfont, fontsize=16)
ax1.set_title(u"绿色是股票价格,红色(右轴)为ATR参数",fontproperties=myfont, fontsize=16)
# plt.xticks(bar_data.index.values, bar_data.barNo.values)
ax1.set_xlabel(u"ATR参数图",fontproperties=myfont,fontsize=16)
ax1.set_xlim(left=-1,right=len(dw))
ax1.grid()
ATR
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345

推荐阅读更多精彩内容