数组
- 数组是一种非常常见的线性数据结构
- 它最大的特点是使用一组连续的内存空间,存储一组相同类型的数据:
- 之所以强调相同类型,是因为相同的类型的数据会占据相等的存储空间,因此就可以通过计算直接获取内存地址。
- 优点:数组最大的特性,是支持随机访问,即可以通过索引直接访问某个数据
- 数组的访问性能非常高,还有一个原因是在硬件层面有CPU的高速缓存(cache)提升性能
- 缺点:数组的添加、删除的性能很低,因为会涉及大量的数据搬移工作。
- 所以你会发现,go 中给数组和切片的操作很少,低性能可能是其中的原因之一
- 这也是为什么 go 中指定 slice 长度可以提升性能(减少追加数据时的数据搬移工作)
链表
- 链表是另一种非常基础的数据结构,与数组不同,它使用零散的内存存储数据:
- 由于它的存储方式和数组完全不同,所以它和数组的特性完全不同:
- 优点:高效的插入和删除
- 缺点:链表的查找非常低效,只能依次遍历所有节点
- 在 go 中,container 包里有双向链表、双向循环链表等容器供我们使用,下面是链表的部分方法:
func (l *List) MoveBefore(e, mark *Element)
func (l *List) MoveAfter(e, mark *Element)
func (l *List) MoveToFront(e *Element)
func (l *List) MoveToBack(e *Element)
func (l *List) Front() *Element
func (l *List) Back() *Element
func (l *List) InsertBefore(v interface{}, mark *Element) *Element
func (l *List) InsertAfter(v interface{}, mark *Element) *Element
func (l *List) PushFront(v interface{}) *Element
func (l *List) PushBack(v interface{}) *Element
- 单纯的链表在实际编程中很少用到,但是如果我们对链表进行升级,给一些额外的结构,它就会有非常广泛的应用。
- 简单的变型有:双向链表、循环链表等,复杂的变型有:红黑树、B+树等。这种变型非常重要,其中就包括 redis 中实现 zset 的跳表:
栈
- 一种操作受到限制的线性表,最大的特点是后进先出
- 栈可以用数组或者链表实现
- 栈只有两种操作:入栈和出栈
def sum(a,b):
return a + b
if __name__ == '__main__':
print(sum(1,2))
下面的图片展示了这个程序执行的过程:
队列
- 队列也是一种操作受限的线性表,它的特性是先进先出
- 队列也只有两种主要操作:从队尾入队和从队首出队
- 队列也可以有变型:循环队列、阻塞队列等:
- 队列可以非常方便地实现生产者-消费者模型,应用有消息队列中间件。
散列表(哈希表)
- 散列表依赖于数组支持依照下标随机访问的特性
- 散列表由三个部分组成:键、散列函数 和 散列值。这个的过程是,键通过散列函数的计算得到散列值,然后去寻找这个值代表的响应的地址:
- 非常常见的一个问题是,如果多个键的散列值相同(散列冲突),该怎么办?常见的解决办法有两种:
- 开放寻址法:
- 链表法
- 上面的方法都是最基础的解决方法,实际上,根据场景的不同,会有很多种解决方案。例如,将链表法后接的链表设计成红黑树,可以防止哈希碰撞攻击。
- 你会发现,数据结构的使用不是孤立的,多种数据结构的组合,会有超乎想象的结果。
在这些组合中,哈希+链表就是一个包打天下的万金油组合,redis中的zset就是这样。
树
- 树是一种非线性表结构,可以用于表示一对多的关系:
-
树中有一些概念用于描述这个结构:
- 树有很多类型,其中最简单的是二叉树,因为二叉树的性质简单,且方便存储。
- 树有很多应用,其中就有大家最为熟知的B+树:
-
还有一种比较有意思的应用:Trie树,这个数据结构可以帮助我们实现关键词提示功能:
Trie树的结构是这样的:
在这个树中,存储了“hello”、“her”、“hi”、“how”、“see”、“so” 几个查找关键字,当用户输入一个特定字符的时候,Trie树会搜索相关的节点,并遍历到树的叶子节点,途径的所有路径都会被记录下来,用于关键字提示:
实际上,输入法的自动补全,IDE的代码的自动补全,浏览器网址输入的自动补全,都使用了这种数据结构。
图
- 图用于表示一种多对多关系
- 多对多的关系很比较复杂,所以图的种类也比较多,大体来说有无向图、有向图、带权图等
- 图有两种存储方法:使用邻接矩阵 和 使用邻接表
- 临接矩阵的优点:存储方式简单、直接,可以高效地获取两个点之间的关系
- 缺点:
1、如果是无向图,邻接矩阵是关于主轴对称的,这会浪费一般的空间
2、如果各个点之间的关联非常稀疏,使用邻接矩阵会浪费大量空间。例如微信的好友关系
优点
1、比较节省存储空间
2、你可以根据业务场景改造邻接表,以提升特定场景下的性能。例如将链表改造成红黑树。缺点
1、对缓存不友好
2、邻接表的查找比邻接矩阵更加耗时
3、如果存储的图是有向图,又要统计点的出度和入度,需要添加逆邻接表图的应用非常广泛,如保存好友关系、最短路径规划等