Task04:数据可视化

数据可视化

1.导入numpy、pandas、 pyplot和数据

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

text = pd.read_csv(r'result.csv')

text.head()

2.可视化展示数据

matplotlib进行可视化的方法

基本的可视化图案

折线图适用于某个属性值随时间变化的趋势

散点图适用于看两个变量之间的相关性

柱状图适用于查看整体数据的分布情况

直方图适用于观察数据频率分布情况

可视化展示泰坦尼克号数据集中男女中生存人数分布情况-柱状图

sex = text.groupby('Sex')['Survived'].sum()

sex.plot.bar()

plt.title('survived_count')

plt.show()

女性的存活人数高于男性的存活人数,女性存活率较高。

可视化展示泰坦尼克号数据集中男女中生存人与死亡人数的比例图-柱状图

text.groupby(['Sex','Survived'])['Survived'].count().unstack().plot(kind='bar',stacked='True')

plt.title('survived_count')

plt.ylabel('count')

1表示生存,0表示死亡。

可视化展示泰坦尼克号数据集中不同票价的人生存和死亡人数分布情况-折线图

排序后折线图

fare_sur = text.groupby(['Fare'])['Survived'].value_counts().sort_values(ascending=False)

fare_sur

fig = plt.figure(figsize=(20, 18))

fare_sur.plot(grid=True)

plt.legend()

plt.show()

排序前折线图

fare_sur1 = text.groupby(['Fare'])['Survived'].value_counts()

fare_sur1

fig = plt.figure(figsize=(20, 18))

fare_sur1.plot(grid=True)

plt.legend()

plt.show()

可视化展示泰坦尼克号数据集中不同仓位等级的人生存和死亡人员的分布情况-柱状图

import seaborn as sns

sns.countplot(x="Pclass", hue="Survived", data=text)

发现:性别与存活率有关系:女性的存活率要更高,仓位等级越高存活率越高。

可视化展示泰坦尼克号数据集中不同年龄的人生存与死亡人数分布情况

facet = sns.FacetGrid(text, hue="Survived",aspect=3)

facet.map(sns.kdeplot,'Age',shade= True)

facet.set(xlim=(0, text['Age'].max()))

facet.add_legend()

可视化展示泰坦尼克号数据集中不同仓位等级的人年龄分布情况-折线图

text.Age[text.Pclass == 1].plot(kind='kde')

text.Age[text.Pclass == 2].plot(kind='kde')

text.Age[text.Pclass == 3].plot(kind='kde')

plt.xlabel("age")

plt.legend((1,2,3),loc="best")

发现:女性存活率更高,仓位等级高的人存活率更高,20-30岁的人存活率更高。


DataWhale开源学习资料:

https://github.com/datawhalechina/hands-on-data-analysis

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 230,321评论 6 543
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 99,559评论 3 429
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 178,442评论 0 383
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 63,835评论 1 317
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 72,581评论 6 412
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 55,922评论 1 328
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 43,931评论 3 447
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 43,096评论 0 290
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 49,639评论 1 336
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 41,374评论 3 358
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 43,591评论 1 374
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 39,104评论 5 364
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 44,789评论 3 349
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 35,196评论 0 28
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 36,524评论 1 295
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 52,322评论 3 400
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 48,554评论 2 379

推荐阅读更多精彩内容

  • 复习:回顾学习完第一章,我们对泰坦尼克号数据有了基本的了解,也学到了一些基本的统计方法,第二章中我们学习了数据的清...
    趁着年轻去旅游阅读 241评论 0 0
  • 数据可视化 2.7如何让人一眼看懂你的数据 在终端输入 : 即可运行import matplotlib.pyplo...
    Akai_阅读 319评论 0 0
  • 数据可视化几种方法: import matplotlib.plot as plt; 1)利用matplotlib自...
    junjunli阅读 873评论 0 0
  • 可视化思路 单个变量单个定性变量:柱状图,条形图,饼图,环形图。反映定性变量的各个水平的频数分布或占比单个定量变量...
    忘词x阅读 909评论 0 0
  • 摘要 1912年4月15日,在首次航行期间,泰坦尼克号撞上冰山后沉没,2224名乘客和机组人员中有1502人...
    Bonboru_57e3阅读 2,569评论 0 2