「转」数据库索引,到底是什么做的?

问题1. 数据库为什么要设计索引?

图书馆存了1000W本图书,要从中找到《架构师之路》,一本本查,要查到什么时候去?

于是,图书管理员设计了一套规则:

(1)一楼放历史类,二楼放文学类,三楼放IT类…

(2)IT类,又分软件类,硬件类…

(3)软件类,又按照书名音序排序…

以便快速找到一本书。

与之类比,数据库存储了1000W条数据,要从中找到name=”shenjian”的记录,一条条查,要查到什么时候去?

于是,要有索引,用于提升数据库的查找速度。

问题2. 哈希(hash)比树(tree)更快,索引结构为什么要设计成树型

加速查找速度的数据结构,常见的有两类:

(1)哈希,例如HashMap,查询/插入/修改/删除的平均时间复杂度都是O(1);

(2),例如平衡二叉搜索树,查询/插入/修改/删除的平均时间复杂度都是O(lg(n));

可以看到,不管是读请求,还是写请求,哈希类型的索引,都要比树型的索引更快一些,那为什么,索引结构要设计成树型呢?

画外音:80%的同学,面试都答不出来。

索引设计成树形,和SQL的需求相关。

对于这样一个单行查询的SQL需求:

select * from t where name=”shenjian”;

确实是哈希索引更快,因为每次都只查询一条记录。

画外音:所以,如果业务需求都是单行访问,例如passport,确实可以使用哈希索引。

但是对于排序查询的SQL需求:

分组:group by

排序:order by

比较:<、>

哈希型的索引,时间复杂度会退化为O(n),而树型的“有序”特性,依然能够保持O(log(n)) 的高效率。

任何脱离需求的设计都是耍流氓。

多说一句,InnoDB并不支持哈希索引。

问题3. 数据库索引为什么使用B+树?

为了保持知识体系的完整性,简单介绍下几种树。

第一种:二叉搜索树

二叉搜索树,如上图,是最为大家所熟知的一种数据结构,就不展开介绍了,它为什么不适合用作数据库索引?

(1)当数据量大的时候,树的高度会比较高,数据量大的时候,查询会比较慢;

(2)每个节点只存储一个记录,可能导致一次查询有很多次磁盘IO;

画外音:这个树经常出现在大学课本里,所以最为大家所熟知。

第二种:B树

B树,如上图,它的特点是:

(1)不再是二叉搜索,而是m叉搜索;

(2)叶子节点,非叶子节点,都存储数据;

(3)中序遍历,可以获得所有节点;

画外音,实在不想介绍这个特性:非根节点包含的关键字个数j满足,(┌m/2┐)-1 <= j <= m-1,节点分裂时要满足这个条件。

B树被作为实现索引的数据结构被创造出来,是因为它能够完美的利用“局部性原理”。

什么是局部性原理?

局部性原理的逻辑是这样的:

(1)内存读写块,磁盘读写慢,而且慢很多;

(2)磁盘预读:磁盘读写并不是按需读取,而是按页预读,一次会读一页的数据,每次加载更多的数据,如果未来要读取的数据就在这一页中,可以避免未来的磁盘IO,提高效率;

画外音:通常,一页数据是4K。

(3)局部性原理:软件设计要尽量遵循“数据读取集中”与“使用到一个数据,大概率会使用其附近的数据”,这样磁盘预读能充分提高磁盘IO;

B树为何适合做索引?

(1)由于是m分叉的,高度能够大大降低;

(2)每个节点可以存储j个记录,如果将节点大小设置为页大小,例如4K,能够充分的利用预读的特性,极大减少磁盘IO;

第三种:B+树

B+树,如上图,仍是m叉搜索树,在B树的基础上,做了一些改进

(1)非叶子节点不再存储数据,数据只存储在同一层的叶子节点上;

画外音:B+树中根到每一个节点的路径长度一样,而B树不是这样。

(2)叶子之间,增加了链表,获取所有节点,不再需要中序遍历;

这些改进让B+树比B树有更优的特性:

(1)范围查找,定位min与max之后,中间叶子节点,就是结果集,不用中序回溯;

画外音:范围查询在SQL中用得很多,这是B+树比B树最大的优势。

(2)叶子节点存储实际记录行,记录行相对比较紧密的存储,适合大数据量磁盘存储;非叶子节点存储记录的PK,用于查询加速,适合内存存储;

(3)非叶子节点,不存储实际记录,而只存储记录的KEY的话,那么在相同内存的情况下,B+树能够存储更多索引;

最后,量化说下,为什么m叉的B+树比二叉搜索树的高度大大大大降低?

大概计算一下:

(1)局部性原理,将一个节点的大小设为一页,一页4K,假设一个KEY有8字节,一个节点可以存储500个KEY,即j=500

(2)m叉树,大概m/2<= j <=m,即可以差不多是1000叉树

(3)那么:

一层树:1个节点,1*500个KEY,大小4K

二层树:1000个节点,1000*500=50W个KEY,大小1000*4K=4M

三层树:1000*1000个节点,1000*1000*500=5亿个KEY,大小1000*1000*4K=4G

画外音:额,帮忙看下有没有算错。

可以看到,存储大量的数据(5亿),并不需要太高树的深度(高度3),索引也不是太占内存(4G)。

总结

数据库索引用于加速查询

虽然哈希索引是O(1),树索引是O(log(n)),但SQL有很多“有序”需求,故数据库使用树型索引

InnoDB不支持哈希索引

数据预读的思路是:磁盘读写并不是按需读取,而是按页预读,一次会读一页的数据,每次加载更多的数据,以便未来减少磁盘IO

局部性原理:软件设计要尽量遵循“数据读取集中”与“使用到一个数据,大概率会使用其附近的数据”,这样磁盘预读能充分提高磁盘IO

数据库的索引最常用B+树:

(1)很适合磁盘存储,能够充分利用局部性原理,磁盘预读;

(2)很低的树高度,能够存储大量数据;

(3)索引本身占用的内存很小;

(4)能够很好的支持单点查询,范围查询,有序性查询;

---------------------------------------------------------------------------

转自微信公众号 架构师之路

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,817评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,329评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,354评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,498评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,600评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,829评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,979评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,722评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,189评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,519评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,654评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,329评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,940评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,762评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,993评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,382评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,543评论 2 349

推荐阅读更多精彩内容