Elasticsearch之索引管理

删除索引

用以下的请求来 删除索引:

DELETE /my_index
DELETE /index_one,index_two
DELETE /index_*
DELETE /_all
DELETE /*

对一些人来说,能够用单个命令来删除所有数据可能会导致可怕的后果。如果你想要避免意外的大量删除, 你可以在你的 elasticsearch.yml 做如下配置:

action.destructive_requires_name: true

这个设置使删除只限于特定名称指向的数据, 而不允许通过指定 _all 或通配符来删除指定索引库。你同样可以通过 Cluster State API 动态的更新这个设置。

索引设置

下面是两个 最重要的设置:

  • number_of_shards

    每个索引的主分片数,默认值是 5 。这个配置在索引创建后不能修改。

  • number_of_replicas

    每个主分片的副本数,默认值是 1 。对于活动的索引库,这个配置可以随时修改。

例如,我们可以创建只有 一个主分片,没有副本的小索引:

PUT /my_temp_index
{
    "settings": {
        "number_of_shards" :   1,
        "number_of_replicas" : 0
    }
}

然后,我们可以用 update-index-settings API 动态修改副本数:

PUT /my_temp_index/_settings
{
    "number_of_replicas": 1
}

配置分析器

第三个重要的索引设置是 analysis 部分, 用来配置已存在的分析器或针对你的索引创建新的自定义分析器。

在下面的例子中,我们创建了一个新的分析器,叫做 es_std , 并使用预定义的 西班牙语停用词列表:

PUT /spanish_docs
{
    "settings": {
        "analysis": {
            "analyzer": {
                "es_std": {
                    "type":      "standard",
                    "stopwords": "_spanish_"
                }
            }
        }
    }
}

es_std 分析器不是全局的--它仅仅存在于我们定义的 spanish_docs 索引中。 为了使用 analyze API来对它进行测试,我们必须使用特定的索引名:

GET /spanish_docs/_analyze
{
  "analyzer":"my_analyzer",
  "text":"El veloz zorro marrón"
}

自定义分析器

虽然Elasticsearch带有一些现成的分析器,然而在分析器上Elasticsearch真正的强大之处在于,你可以通过在一个适合你的特定数据的设置之中组合字符过滤器、分词器、词汇单元过滤器来创建自定义的分析器。

PUT /my_index
{
    "settings": {
        "analysis": {
            "char_filter": {
                "&_to_and": {
                    "type":       "mapping",
                    "mappings": [ "&=> and "]
            }},
            "filter": {
                "my_stopwords": {
                    "type":       "stop",
                    "stopwords": [ "the", "a" ]
            }},
            "analyzer": {
                "my_analyzer": {
                    "type":         "custom",
                    "char_filter":  [ "html_strip", "&_to_and" ],
                    "tokenizer":    "standard",
                    "filter":       [ "lowercase", "my_stopwords" ]
            }}
}}}

测试自定义分析器

GET /my_index/_analyze
{
  "analyzer":"my_analyzer",
  "text":"The quick & brown fox"
}

类型(type)和映射

Elasticsearch 类型是 以 Lucene 处理文档的这个方式为基础来实现的。一个索引可以有多个类型,这些类型的文档可以存储在相同的索引中。

Lucene 没有文档类型的概念,每个文档的类型名被存储在一个叫 _type 的元数据字段上。 当我们要检索某个类型的文档时, Elasticsearch 通过在 _type 字段上使用过滤器限制只返回这个类型的文档。

Lucene 也没有映射的概念。 映射是 Elasticsearch 将复杂 JSON 文档 映射 成 Lucene 需要的扁平化数据的方式。

  • 避免类型陷阱

    这导致了一个有趣的思想实验: 如果有两个不同的类型,每个类型都有同名的字段,但映射不同(例如:一个是字符串一个是数字),将会出现什么情况?

    简单回答是,Elasticsearch 不会允许你定义这个映射。当你配置这个映射时,将会出现异常。

    详细回答是,每个 Lucene 索引中的所有字段都包含一个单一的、扁平的模式。一个特定字段可以映射成 string 类型也可以是 number 类型,但是不能两者兼具。因为类型是 Elasticsearch 添加的 优于 Lucene 的额外机制(以元数据 _type 字段的形式),在 Elasticsearch 中的所有类型最终都共享相同的映射。

    以 data 索引中两种类型的映射为例:

{
   "data": {
      "mappings": {
         "people": {
            "properties": {
               "name": {
                  "type": "string",
               },
               "address": {
                  "type": "string"
               }
            }
         },
         "transactions": {
            "properties": {
               "timestamp": {
                  "type": "date",
                  "format": "strict_date_optional_time"
               },
               "message": {
                  "type": "string"
               }
            }
         }
      }
   }
}

每个类型定义两个字段 (分别是 "name"/"address" 和 "timestamp"/"message" )。它们看起来是相互独立的,但在后台 Lucene 将创建一个映射,如:

{
   "data": {
      "mappings": {
        "_type": {
          "type": "string",
          "index": "not_analyzed"
        },
        "name": {
          "type": "string"
        }
        "address": {
          "type": "string"
        }
        "timestamp": {
          "type": "long"
        }
        "message": {
          "type": "string"
        }
      }
   }
}

注: 这不是真实有效的映射语法,只是用于演示

对于整个索引,映射在本质上被 扁平化 成一个单一的、全局的模式。这就是为什么两个类型不能定义冲突的字段:当映射被扁平化时,Lucene 不知道如何去处理。

  • 类型讨论

    那么,这个讨论的结论是什么?技术上讲,多个类型可以在相同的索引中存在,只要它们的字段不冲突(要么因为字段是互为独占模式,要么因为它们共享相同的字段)。

    重要的一点是: 类型可以很好的区分同一个集合中的不同细分。在不同的细分中数据的整体模式是相同的(或相似的)。

    类型不适合 完全不同类型的数据 。如果两个类型的字段集是互不相同的,这就意味着索引中将有一半的数据是空的(字段将是 稀疏的 ),最终将导致性能问题。在这种情况下,最好是使用两个单独的索引。

根对象

映射的最高一层被称为 根对象 ,它可能包含下面几项:

  • 一个 properties 节点,列出了文档中可能包含的每个字段的映射
  • 各种元数据字段,它们都以一个下划线开头,例如 _type 、 _id 和 _source
  • 设置项,控制如何动态处理新的字段,例如 analyzer 、 dynamic_date_formats 和 dynamic_templates
  • 其他设置,可以同时应用在根对象和其他 object 类型的字段上,例如 enabled 、 dynamic 和 include_in_all

动态映射

当 Elasticsearch 遇到文档中以前 未遇到的字段,它用 dynamic mapping 来确定字段的数据类型并自动把新的字段添加到类型映射。

有时这是想要的行为有时又不希望这样。通常没有人知道以后会有什么新字段加到文档,但是又希望这些字段被自动的索引。也许你只想忽略它们。如果Elasticsearch是作为重要的数据存储,可能就会期望遇到新字段就会抛出异常,这样能及时发现问题。

幸运的是可以用 dynamic 配置来控制这种行为 ,可接受的选项如下:

  • true,动态添加新的字段--缺省
  • false,忽略新的字段
  • strict,如果遇到新字段抛出异常

配置参数 dynamic 可以用在根 object 或任何 object 类型的字段上。你可以将 dynamic 的默认值设置为 strict , 而只在指定的内部对象中开启它, 例如:

PUT /my_index
{
    "mappings": {
        "my_type": {
            "dynamic":      "strict", 
            "properties": {
                "title":  { "type": "string"},
                "stash":  {
                    "type":     "object",
                    "dynamic":  true 
                }
            }
        }
    }
}

使用上述动态映射, 你可以给 stash 对象添加新的可检索的字段:

PUT /my_index/my_type/1
{
    "title":   "This doc adds a new field",
    "stash": { "new_field": "Success!" }
}

但是对根节点对象 my_type 进行同样的操作会失败:

PUT /my_index/my_type/1
{
    "title":     "This throws a StrictDynamicMappingException",
    "new_field": "Fail!"
}

自定义动态映射

使用 dynamic_templates ,你可以完全控制 新检测生成字段的映射。你甚至可以通过字段名称或数据类型来应用不同的映射。

每个模板都有一个名称, 你可以用来描述这个模板的用途, 一个 mapping 来指定映射应该怎样使用,以及至少一个参数 (如 match) 来定义这个模板适用于哪个字段。

模板按照顺序来检测;第一个匹配的模板会被启用。例如,我们给 string 类型字段定义两个模板:

  • es :以 _es 结尾的字段名需要使用 spanish 分词器。
  • en :所有其他字段使用 english 分词器。
PUT /my_index
{
    "mappings": {
        "my_type": {
            "dynamic_templates": [
                { "es": {
                      "match":              "*_es", 
                      "match_mapping_type": "string",
                      "mapping": {
                          "type":           "string",
                          "analyzer":       "spanish"
                      }
                }},
                { "en": {
                      "match":              "*", 
                      "match_mapping_type": "string",
                      "mapping": {
                          "type":           "string",
                          "analyzer":       "english"
                      }
                }}
            ]
}}}

缺省映射

通常,一个索引中的所有类型(type)共享相同的字段和设置。 default 映射更加方便地指定通用设置,而不是每次创建新类型时都要重复设置。 default 映射是新类型的模板。在设置 default 映射之后创建的所有类型都将应用这些缺省的设置,除非类型在自己的映射中明确覆盖这些设置。

例如,我们可以使用 default 映射为所有的类型禁用 _all 字段, 而只在 blog 类型启用:

PUT /my_index
{
    "mappings": {
        "_default_": {
            "_all": { "enabled":  false }
        },
        "blog": {
            "_all": { "enabled":  true  }
        }
    }
}

重新索引数据

尽管可以增加新的类型到索引中,或者增加新的字段到类型中,但是不能添加新的分析器或者对现有的字段做改动。 如果你那么做的话,结果就是那些已经被索引的数据就不正确, 搜索也不能正常工作。

对现有数据的这类改变最简单的办法就是重新索引:用新的设置创建新的索引并把文档从旧的索引复制到新的索引。

字段 _source 的一个优点是在Elasticsearch中已经有整个文档。你不必从源数据中重建索引,而且那样通常比较慢。

为了有效的重新索引所有在旧的索引中的文档,用 scroll 从旧的索引检索批量文档 , 然后用 bulk API 把文档推送到新的索引中。

从Elasticsearch v2.3.0开始, Reindex API 被引入。它能够对文档重建索引而不需要任何插件或外部工具。

索引别名和零停机

在前面提到的,重建索引的问题是必须更新应用中的索引名称。 索引别名就是用来解决这个问题的!

索引 别名 就像一个快捷方式或软连接,可以指向一个或多个索引,也可以给任何一个需要索引名的API来使用。别名 带给我们极大的灵活性。

有两种方式管理别名:

  • _alias 用于单个操作
  • _aliases 用于执行多个原子级操作

在本章中,我们假设你的应用有一个叫 my_index 的索引。事实上, my_index 是一个指向当前真实索引的别名。真实索引包含一个版本号: my_index_v1 , my_index_v2 等等。

首先,创建索引 my_index_v1 ,然后将别名 my_index 指向它:

# 创建索引 my_index_v1 
PUT /my_index_v1 
# 设置别名 my_index 指向 my_index_v1
PUT /my_index_v1/_alias/my_index 

你可以检测这个别名指向哪一个索引:

GET /*/_alias/my_index

或哪些别名指向这个索引:

GET /my_index_v1/_alias/*

两者都会返回下面的结果:

{
    "my_index_v1" : {
        "aliases" : {
            "my_index" : { }
        }
    }
}

然后,我们决定修改索引中一个字段的映射。当然,我们不能修改现存的映射,所以我们必须重新索引数据。 首先, 我们用新映射创建索引 my_index_v2 :

PUT /my_index_v2
{
    "mappings": {
        "my_type": {
            "properties": {
                "tags": {
                    "type":   "string",
                    "index":  "not_analyzed"
                }
            }
        }
    }
}

然后我们将数据从 my_index_v1 索引到 my_index_v2 ,下面的过程在 重新索引你的数据 中已经描述过。一旦我们确定文档已经被正确地重索引了,我们就将别名指向新的索引。

一个别名可以指向多个索引,所以我们在添加别名到新索引的同时必须从旧的索引中删除它。这个操作需要原子化,这意味着我们需要使用 _aliases 操作:

POST /_aliases
{
    "actions": [
        { "remove": { "index": "my_index_v1", "alias": "my_index" }},
        { "add":    { "index": "my_index_v2", "alias": "my_index" }}
    ]
}

你的应用已经在零停机的情况下从旧索引迁移到新索引了。

即使你认为现在的索引设计已经很完美了,在生产环境中,还是有可能需要做一些修改的。做好准备:在你的应用中使用别名而不是索引名。然后你就可以在任何时候重建索引。别名的开销很小,应该广泛使用。

参考资料

Elasticsearch:权威指南

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,126评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,254评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,445评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,185评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,178评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,970评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,276评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,927评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,400评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,883评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,997评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,646评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,213评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,204评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,423评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,423评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,722评论 2 345

推荐阅读更多精彩内容