Floyd 算法

Floyd 算法

简介

  • Floyd 算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与 Dijkstra 算法类似。

  • 该算法名称以创始人之一、1978 年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特 · 弗洛伊德命名。

核心思路

路径矩阵

  • 通过一个图的权值矩阵求出它的每两点间的最短路径矩阵。
  • 从图的带权邻接矩阵 A=[a(i,j)] n×n 开始,递归地进行 n 次更新,即由矩阵 D(0)=A,按一个公式,构造出矩阵 D(1);又用同样地公式由 D(1) 构造出 D(2);……;最后又用同样的公式由 D(n-1) 构造出矩阵 D(n)。矩阵 D(n) 的 i 行 j 列元素便是 i 号顶点到 j 号顶点的最短路径长度,称 D(n) 为图的距离矩阵,同时还可引入一个后继节点矩阵 path 来记录两点间的最短路径。
  • 采用松弛技术(松弛操作),对在 i 和 j 之间的所有其他点进行一次松弛。所以时间复杂度为 O(n^3)。

状态转移方程

  • path[i,j]:=min{path[i,k]+path[k,j],path[i,j]}

算法描述

  1. 从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。

  2. 对于每一对顶点 u 和 v,看看是否存在一个顶点 w (一般称为中间点)使得从 u 到 w 再到 v 比已知的路径更短。如果是,更新它(专业术语为:松弛)。

  3. 遍历直到结束,这时候存储图的数据结构就得到了多源最短路径。

优缺点分析

  • Floyd 算法适用于 APSP(All Pairs Shortest Paths,多源最短路径),是一种动态规划算法,稠密图效果最佳,边权可正可负。此算法简单有效,由于三重循环结构紧凑,对于稠密图,效率要高于执行 | V | 次 Dijkstra 算法,也要高于执行 | V | 次 SPFA 算法。

    稠密图定义:边的条数 | E | 接近 | V|²,称为稠密图(dense graph)

  • 优点:容易理解,可以算出任意两个节点之间的最短距离,代码编写简单。

  • 缺点:时间复杂度比较高,不适合计算大量数据。时间复杂度 O(n^3),空间复杂度 O(n^2)。

Python 代码实现

  • 代码:

      import copy
      M=1000000
      def Floyd(G):
          n=len(G)
          path=copy.deepcopy(G)
          for k in range(0,n):
              for i in range(0,n):
                  for j in range(0,n):
                      print("Comparing path[%s][%s] and {path[%s][%s]+path[%s][%s]}"%(i,j,i,k,k,j))
                      print("Former path[%s][%s] = %s"%(i,j,path[i][j]))
                      path[i][j]=min(path[i][j],path[i][k]+path[k][j])
                      print("Present path[%s][%s] = %s\n"%(i,j,path[i][j]))
          return path
    
      if __name__=='__main__':
          G=[
              [0,30,15,M,M,M],
              [5,0,M,M,20,30],
              [M,10,0,M,M,15],
              [M,M,M,0,M,M],
              [M,M,M,10,0,M],
              [M,M,M,30,10,0]
              ]
          print("---------------Floyd----------------")
          path=Floyd(G)
          print("Graph = ")
          for i in range(0,len(G)):
              print (path[i])
    

代码详解

  • 引入 copy ,定义无穷值,在 Python 里还有种写法: M = float('inf')

  • 定义 Floyd 函数,参数为图的邻接矩阵 G,在里面首先利用 copy 函数复制一份,不复制的话,会导致两个变量指向同一个地址(邻接矩阵)

  • 三重 for 循环,很容易理解

  • if __name__=='__main__'

    不理解的复制这段代码,百度谷歌

测试

  • 还是拿我的另一篇文章 Dijkstra 算法 中的测试用例

  • 邻接矩阵:

          G=[
              [0,30,15,M,M,M],
              [5,0,M,M,20,30],
              [M,10,0,M,M,15],
              [M,M,M,0,M,M],
              [M,M,M,10,0,M],
              [M,M,M,30,10,0]
              ]
    
  • 表示的图如下:

    test
  • 输出:

    floydtest

小结

  • 从上面的输出结果可以看到 G 矩阵已经被更新了

  • 有些走不通的路径现在可以走通了,因为原来是邻接矩阵:两个顶点有邻接边,邻接矩阵对应点才有值;现在是整个网络,顶点 i 到顶点 j 如果可达,那么 G[i][j] 就有值。

  • 但是,我们是得到了两个点的最小 cost,最短路径要怎么得到呢?可以再借助一个 path 矩阵,它记录了中间点的信息,我们可以在最后根据更新后的 G 矩阵回溯 path 矩阵得到最短路径。

全局最短路径的数据结构

ShortestPath_dict = {
    0: {1: [0, 2, 1], 2: [0, 2], 3: [0, 2, 5, 4, 3], 4: [0, 2, 5, 4], 5: [0, 2, 5]},
    1: {0: [1, 0], 2: [1, 0, 2], 3: [1, 4, 3], 4: [1, 4], 5: [1, 5]}, 2: {0: [2, 1, 0],
    1: [2, 1], 3: [2, 5, 4, 3], 4: [2, 5, 4], 5: [2, 5]},
    3: {0: [], 1: [], 2: [], 4: [], 5: []},
    4: {0: [], 1: [], 2: [], 3: [4, 3], 5: []},
    5: {0: [], 1: [], 2: [], 3: [5, 4, 3], 4: [5, 4]}
    }
  • 这个数据结构利用了字典与列表,其中每两个顶点的最短路径用列表表示,如顶点 0 到顶点 1 :0: {1: [0, 2, 1],其中的[0, 2, 1]就是最短路径。

利用 Floyd 得到全局最短路径

  • 代码:

      # ------------------函数-------------------
      def back_path(path,i,j,shortestPath):            #递归回溯
          print ("path[%s][%s] = "%(i,j),path[i][j])
          if -1 != path[i][j]:
              shortestPath = back_path(path,i,path[i][j],shortestPath)
              shortestPath = back_path(path,path[i][j],j,shortestPath)
          if j not in shortestPath:
              shortestPath.append(j)
          return shortestPath
    
      def getShortestPath(graph,path,i,j):
          shortestPath = []
          if graph[i][j] == float('inf') or i == j:
              print("顶点%s 不能到达 顶点%s!"%(i,j))
              return shortestPath
          elif path[i][j] == -1:
              shortestPath.append(i)
              shortestPath.append(j)
          else :
              shortestPath.append(i)
              shortestPath = back_path(path,i,j,shortestPath)
          print("顶点%s 到 顶点%s 的路径为:"%(i,j),shortestPath)
          return shortestPath
    
      def getAllShortestPath(graph,path):
          print("------正在生成全局最短路径------")
          ShortestPath_dict = {}
          for i in range(N):
              ShortestPath_dict[i] = {}
              for j in range(N):
                  print("尝试生成顶点%s到顶点%s的最短路径..."%(i,j))
                  if i !=j :
                      shortestPath = getShortestPath(graph,path,i,j)
                      ShortestPath_dict[i][j] = shortestPath
                  print("--------------------------------")
          return ShortestPath_dict
    
      # ----------------------定义--------------------
      M=float('inf')      #无穷大
      graph = [
              [0,30,15,M,M,M],
              [5,0,M,M,20,30],
              [M,10,0,M,M,15],
              [M,M,M,0,M,M],
              [M,M,M,10,0,M],
              [M,M,M,30,10,0]
              ]
      N = len(graph)
      path = []
      for i in range(N):
          path.append([])
          for j in range(N):
              path[i].append(-1)
    
      print ("Original Graph:\n",graph)
      # -----------------Floyd Algorithm----------------
      for k in range(N):
          for i in range(N):
              for j in range(N):
                  if graph[i][j] > graph[i][k] + graph[k][j]:
                      graph[i][j] = graph[i][k] + graph[k][j]
                      path[i][j] = k
    
      print ("Shortest Graph:\n",graph)
      print ("Path:\n",path)
    
      print("ShortestPath =\n",getAllShortestPath(graph,path))
    

测试2

  • 邻接矩阵如上所示

  • 表示的图也如上所示

  • 截图

    test3

    last

代码详解2

  • 在三重循环阶段,与前文第一种做法不同的是:每次还加入了path[i][j] = k,这样每次松弛,都会被记录在 path 矩阵中

  • path 矩阵完成后,如测试2中的截图所示

  • getAllShortestPath 函数

    • 构造字典 ShortestPath_dict
    • 两两遍历图中各点,循环调用 getShortestPath 函数
  • getShortestPath 函数

    • 如果两个顶点不可达或者这两个顶点为同一个顶点,那么直接说明不可达,且返回值为空列表:[]
    • 如果两个顶点不需要松弛就可以得到最短路径,那么在 path 矩阵中对应点的值就为初始值 -1,这代表了这两个顶点邻接,在 getShortestPath 函数中是需要判断的
    • 如果两个顶点需要松弛才能得到最短路径,那么在 path 矩阵中对应点的值就不为 -1,那么需要递归调用 back_path 函数
  • back_path 函数

    • 之前说了,path 矩阵中记录的是每次松弛操作时的中间点,所以在函数中前后两次调用本身
  • 举例说明

    • 以测试2的截图为例,尝试顶点0到顶点3的最短路径:
      • 进入 getShortestPath(graph,path,i,j) ,调用 back_path(path,0,3,[0])
      • 首先调用 back_path(path,0,3,[0]) ,发现 path[0][3]=5,说明需要顶点5的中转
      • 于是调用 back_path(path,0,5,[0]) ,发现 path[0][5]=2,说明需要顶点2的中转
      • 继续调用 back_path(path,0,2,[0]) ,发现到头了,顶点0和顶点2直接邻接,于是不再递归下去了,添加顶点2到最短路径 shortestPath,此时 [0,2]
      • 返回上层,调用 back_path(path,2,5,[0,2]) ,发现到头了,顶点2和顶点5直接邻接,于是不再递归下去了,添加顶点5到最短路径 shortestPath,此时 [0,2,5]
      • 返回上层,调用 back_path(path,5,3,[0,2,5]),发现需要顶点4的中转
      • 于是调用 back_path(path,5,4,[0,2,5]),发现到头了,不再递归,添加顶点4到最短距离,此时 [0,2,5,4]
      • 返回上层,调用 back_path(path,4,3,[0,2,5,4]),发现到头了,不再递归,添加顶点3到最短距离,此时 [0,2,5,4,3] 已经是最短距离了
      • 注意:因为只要调用 back_path 就会添加顶点进入最短路径 shortestPath,为了避免重复,加入了 if 判断,直接过滤掉重复的顶点,因为最短路径不可能绕圈子。

源码地址:https://github.com/edisonleolhl/DataStructure-Algorithm/blob/master/Graph/ShortestPath/floyd.py

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352

推荐阅读更多精彩内容