Numerical optimizers for Logistic Regression

全文转载自Numerical optimizers for Logistic Regression
原网页看不了公式顾将全文进行了转载

In this post I compar several implementations of Logistic Regression. The task was to implement a Logistic Regression model using standard optimization tools from scipy.optimize and compare them against state of the art implementations such as LIBLINEAR.

In this blog post I'll write down all the implementation details of this model, in the hope that not only the conclusions but also the process would be useful for future comparisons and benchmarks.

Function evaluation

We consider the case in which the decision function is an affine function, i.e., f(x) = \langle x, w \rangle + c where w and c are parameters to estimate. The loss function for the \ell_2-regularized logistic regression, i.e. the function to be minimized is

\mathcal{L}(w, \lambda, X, y) = - \frac{1}{n}\sum_{i=1}^n \log(\phi(y_i (\langle X_i, w \rangle + c))) + \frac{\lambda}{2} w^T w

where \phi(t) = 1\. / (1 + \exp(-t)) is the logistic function, \lambda w^T w is the regularization term and X, y is the input data, with X \in \mathbb{R}^{n \times p} and y \in \{-1, 1\}^n. However, this formulation is not great from a practical standpoint. Even for not unlikely values of t such as t = -100, \exp(100) will overflow, assigning the loss an (erroneous) value of +\infty. For this reason 1, we evaluate \log(\phi(t)) as

\log(\phi(t)) = \begin{cases} - \log(1 + \exp(-t)) \text{ if } t > 0 \\ t - \log(1 + \exp(t)) \text{ if } t \leq 0\\ \end{cases}

The gradient of the loss function is given by

\begin{aligned} \nabla_w \mathcal{L} &= \frac{1}{n}\sum_{i=1}^n y_i X_i (\phi(y_i (\langle X_i, w \rangle + c)) - 1) + \lambda w \\ \nabla_c \mathcal{L} &= \sum_{i=1}^n y_i (\phi(y_i (\langle X_i, w \rangle + c)) - 1) \end{aligned}

Similarly, the logistic function \phi used here can be computed in a more stable way using the formula

\phi(t) = \begin{cases} 1 / (1 + \exp(-t)) \text{ if } t > 0 \\ \exp(t) / (1 + \exp(t)) \text{ if } t \leq 0\\ \end{cases}

Finally, we will also need the Hessian for some second-order methods, which is given by

\nabla_w ^2 \mathcal{L} = X^T D X + \lambda I

where I is the identity matrix and D is a diagonal matrix given by D_{ii} = \phi(y_i w^T X_i)(1 - \phi(y_i w^T X_i)).

In Python, these function can be written as

import numpy as np

def phi(t):
    # logistic function, returns 1 / (1 + exp(-t))
    idx = t > 0
    out = np.empty(t.size, dtype=np.float)
    out[idx] = 1. / (1 + np.exp(-t[idx]))
    exp_t = np.exp(t[~idx])
    out[~idx] = exp_t / (1. + exp_t)
    return out

def loss(x0, X, y, alpha):
    # logistic loss function, returns Sum{-log(phi(t))}
    w, c = x0[:X.shape[1]], x0[-1]
    z = X.dot(w) + c
    yz = y * z
    idx = yz > 0
    out = np.zeros_like(yz)
    out[idx] = np.log(1 + np.exp(-yz[idx]))
    out[~idx] = (-yz[~idx] + np.log(1 + np.exp(yz[~idx])))
    out = out.sum() / X.shape[0] + .5 * alpha * w.dot(w)
    return out

def gradient(x0, X, y, alpha):
    # gradient of the logistic loss
    w, c = x0[:X.shape[1]], x0[-1]
    z = X.dot(w) + c
    z = phi(y * z)
    z0 = (z - 1) * y
    grad_w = X.T.dot(z0) / X.shape[0] + alpha * w
    grad_c = z0.sum() / X.shape[0]
    return np.concatenate((grad_w, [grad_c]))

Benchmarks

I tried several methods to estimate this \ell_2-regularized logistic regression. There is one first-order method (that is, it only makes use of the gradient and not of the Hessian), Conjugate Gradient whereas all the others are Quasi-Newton methods. The method I tested are:

  • CG = Conjugate Gradient as implemented in scipy.optimize.fmin_cg
  • TNC = Truncated Newton as implemented in scipy.optimize.fmin_tnc
  • BFGS = Broyden–Fletcher–Goldfarb–Shanno method, as implemented in scipy.optimize.fmin_bfgs.
  • L-BFGS = Limited-memory BFGS as implemented in scipy.optimize.fmin_l_bfgs_b. Contrary to the BFGS algorithm, which is written in Python, this one wraps a C implementation.
  • Trust Region = Trust Region Newton method 1. This is the solver used by LIBLINEAR that I've wrapped to accept any Python function in the package pytron

To assure the most accurate results across implementations, all timings were collected by callback functions that were called from the algorithm on each iteration. Finally, I plot the maximum absolute value of the gradient (=the infinity norm of the gradient) with respect to time.

The synthetic data used in the benchmarks was generated as described in 2 and consists primarily of the design matrix X being Gaussian noise, the vector of coefficients is drawn also from a Gaussian distribution and the explained variable y is generated as y = \text{sign}(X w). We then perturb matrix X by adding Gaussian noise with covariance 0.8. The number of samples and features was fixed to 10^4 and 10^3 respectively. The penalization parameter \lambda was fixed to 1.

In this setting variables are typically uncorrelated and most solvers perform decently:

Benchmark Logistic

Here, the Trust Region and L-BFGS solver perform almost equally good, with Conjugate Gradient and Truncated Newton falling shortly behind. I was surprised by the difference between BFGS and L-BFGS, I would have thought that when memory was not an issue both algorithms should perform similarly.

To make things more interesting, we now make the design to be slightly more correlated. We do so by adding a constant term of 1 to the matrix X and adding also a column vector of ones this matrix to account for the intercept. These are the results:

Benchmark Logistic

Here, we already see that second-order methods dominate over first-order methods (well, except for BFGS), with Trust Region clearly dominating the picture but with TNC not far behind.

Finally, if we force the matrix to be even more correlated (we add 10. to the design matrix X), then we have:

Benchmark Logistic

Here, the Trust-Region method has the same timing as before, but all other methods have got substantially worse.The Trust Region method, unlike the other methods is surprisingly robust to correlated designs.

To sum up, the Trust Region method performs extremely well for optimizing the Logistic Regression model under different conditionings of the design matrix. The LIBLINEAR software uses this solver and thus has similar performance, with the sole exception that the evaluation of the logistic function and its derivatives is done in C++ instead of Python. In practice, however, due to the small number of iterations of this solver I haven't seen any significant difference.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,718评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,683评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,207评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,755评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,862评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,050评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,136评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,882评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,330评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,651评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,789评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,477评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,135评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,864评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,099评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,598评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,697评论 2 351

推荐阅读更多精彩内容