01-选择排序(完成)

选择排序(基本排序算法)—— 不稳定!!!

动态图:

选择排序.gif

一、概念:

原理:就是从需要排序(待排序 )的数据中选择最小的(从小到大排序),然后放在第一个,选择第二小的放在第二个……

二、基本操作(步骤):

package main

import (
    "fmt"
    "math/rand"
    "time"
)

//1.
const (
    num      = 100000
    rangeNum = 100000
)

func main() {
    // fmt.Println(time.Now().Unix() , time.Now().UnixNano())
    randSeed := rand.New(rand.NewSource(time.Now().Unix() + time.Now().UnixNano()))
    var buf []int
    for i := 0; i < num; i++ {
        buf = append(buf, randSeed.Intn(rangeNum))
    }
    t := time.Now()
    // 选择排序
    xuanze(buf)
    fmt.Println(time.Since(t))  //求排序时间,与t := time.Now()配合
}
// 选择排序
func xuanze(buf []int) {
    times := 0
    for i := 0; i < len(buf)-1; i++ {
        min := i
        for j := i; j < len(buf); j++ {
            times++
            if buf[min] > buf[j] {
                min = j
            }
        }
        if min != i {
            tmp := buf[i]
            buf[i] = buf[min]
            buf[min] = tmp
        }
    }
    fmt.Println("xuanze times: ", times)
}

三、时间、空间复杂度与排序稳定性:

  不难看出,寻找最小的元素需要一个循环的过程,而排序又是需要一个循环的过程。因此显而易见,这个算法的时间复杂度是O(n*n)的。这就意味值在n比较小的情况下,算法可以保证一定的速度,当n足够大时,算法的效率会降低。并且随着n的增大,算法的时间增长很快。因此使用时需要特别注意。

时间复杂度: O(n^2)
  选择排序的复杂度分析。第一次内循环比较N - 1次,然后是N-2次,N-3次,……,最后一次内循环比较1次。共比较的次数是 (N - 1) + (N - 2) + … + 1,求等差数列和,得(N−1+1)∗N/2=(N^2) /2(N - 1 + 1)* N / 2 = (N^2) / 2(N−1+1)∗N/2=(N^2)/2。舍去最高项系数,其时间复杂度为 O(N^2)。
  虽然选择排序和冒泡排序的时间复杂度一样,但实际上,选择排序进行的交换操作很少,最多会发生 N - 1次交换。而冒泡排序最坏的情况下要发生N^2 /2交换操作。从这个意义上讲,交换排序的性能略优于冒泡排序。而且,交换排序比冒泡排序的思想更加直观。

空间复杂度:O(1)
  最优的情况下(已经有顺序)复杂度为:O(0) ;最差的情况下(全部元素都要重新排序)复杂度为:O(n );平均的复杂度:O(1)

稳定性:不稳定
  理由 ==> 在一趟循环排序中,如果当前元素比一个元素小,而该小的元素又出现在和当前元素相等 的元素的后面,那么交换后稳定性就被破坏了。
  例子 ==> 序列5 8 5 2 9,我们知道第一遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是一个稳定的排序算法。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,076评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,658评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,732评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,493评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,591评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,598评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,601评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,348评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,797评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,114评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,278评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,953评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,585评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,202评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,180评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,139评论 2 352