题目描述
设有N×NN \times NN×N的方格图(N≤9)(N \le 9)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字000。如下图所示(见样例):
A
0 0 0 0 0 0 0 0
0 0 13 0 0 6 0 0
0 0 0 0 7 0 0 0
0 0 0 14 0 0 0 0
0 21 0 0 0 4 0 0
0 0 15 0 0 0 0 0
0 14 0 0 0 0 0 0
0 0 0 0 0 0 0 0
B
某人从图的左上角的AAA点出发,可以向下行走,也可以向右走,直到到达右下角的BBB点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字000)。
此人从AAA点到BBB点共走两次,试找出222条这样的路径,使得取得的数之和为最大。
输入格式
输入的第一行为一个整数NNN(表示N×NN \times NN×N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的000表示输入结束。
输出格式
只需输出一个整数,表示222条路径上取得的最大的和。
输入输出样例
输入 #1
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
----------------------------------------------------思路---------------------------------------------------------------------
关键是将走两次的换成是两个人的走,状态转移方程为:
f[i][j][k][l]=max(f[i−1][j][k−1][l],f[i−1][j][k][l−1],f[i][j−1][k−1][l],f[i][j−1][k][l−1])+a[i][j]+a[k][l];f[i][j][k][l]=max(f[i-1][j][k-1][l],f[i-1][j][k][l-1],f[i][j-1][k-1][l],f[i][j-1][k][l-1])+a[i][j]+a[k][l];f[i][j][k][l]=max(f[i−1][j][k−1][l],f[i−1][j][k][l−1],f[i][j−1][k−1][l],f[i][j−1][k][l−1])+a[i][j]+a[k][l];
除此外还要考虑,i=k,j=l的情况,如果相等则应相应减;
代码
package 洛谷;
import java.util.Scanner;
public class P1004 {
static int f[][][][]=new int[12][12][12][12];
static int a[][]=new int[12][12];
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int x=sc.nextInt();int y=sc.nextInt();int z=sc.nextInt();
while(x!=0&&y!=0&&z!=0) {
a[x][y]=z;
x=sc.nextInt();y=sc.nextInt();z=sc.nextInt();
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
for(int k=1;k<=n;k++){
for(int l=1;l<=n;l++){
f[i][j][k][l]=Math.max(Math.max(f[i-1][j][k-1][l],f[i-1][j][k][l-1]),Math.max(f[i][j-1][k-1][l],f[i][j-1][k][l-1]))+a[i][j]+a[k][l];
if(i==k&&l==j)f[i][j][k][l]-=a[i][j];
}
}
}
}
System.out.println(f[n][n][n][n]);
}
}