实时流计算:Structured Streaming

Sparkstreaming首次引入在0.*版本,其核心思想是利用spark批处理框架,以microbatch(以一段时间的流作为一个batch)的方式,完成对流数据的处理。其核心思想是建立DStream进行微批处理,依旧属于批处理的一部分。不满足基于Event Time的实时处理需求。


Event time 事件时间: 就是数据真正发生的时间,比如用户浏览了一个页面可能会产生一条用户的该时间点的浏览日志。
Process time 处理时间: 则是这条日志数据真正到达计算框架中被处理的时间点,简单的说,就是你的Spark程序是什么时候读到这条日志的。


事件时间是嵌入在数据本身中的时间。对于许多应用程序,用户可能希望在此事件时间操作。例如,如果要获取IoT设备每分钟生成的事件数,则可能需要使用生成数据的时间(即数据中的事件时间),而不是Spark接收他们的时间。事件时间在此模型中非常自然地表示 - 来自设备的每个事件都是表中的一行,事件时间是该行中的一个列值。

Structured Streaming是Spark2.0版本提出的新的实时流框架(2.0和2.1是实验版本,从Spark2.2开始为稳定版本),相比于Spark Streaming,优点如下:
1.同样能支持多种数据源的输入和输出,Kafka、flume、Socket、Json。
2.基于Event-Time,相比于Spark Streaming的Processing-Time更精确,更符合业务场景。
3.支持spark2的dataframe处理。
4.解决了Spark Streaming存在的代码升级,DAG图变化引起的任务失败,无法断点续传的问题。
5.基于SparkSQL构建的可扩展和容错的流式数据处理引擎,使得实时流式数据计算可以和离线计算采用相同的处理方式(DataFrame&SQL)。
6.可以使用与静态数据批处理计算相同的方式来表达流计算。
7.结构化流查询(Structured Streaming Query)内部默认使用微批处理引擎( micro-batch processing engine),它将数据流看作一系列小的批任务(batch jobs)来处理,从而达到端到端如100毫秒这样低的延迟以及只执行一次容错的保证。然而,从Spark 2.3,我们已经引入了一个新的低延迟处理方式——连续处理(Continuous Processing),可以达到端到端如1毫秒这样低的延迟至少一次保证。不用改变查询中DataSet/DataFrame的操作,你就能够选择基于应用要求的查询模式。

Structured Streaming支持的Source:
1.File Source:从给定的目录读取数据,目前支持的格式有text,csv,json,parquet,容错。
2.Kafka Source:从kafka拉取数据。仅兼容kafka 0.10.0或者更高版本,容错。
3.Socket Source(for testing):从一个连接中读取UTF8编码的文本数据,不容错。

Structured Streaming的输出:

输出模式 功能
Append mode(default) 仅仅从上次触发计算到当前新增的行会被输出到sink。仅仅支持行数据插入结果表后不进行更改的query操作。因此,这种方式能保证每行数据仅仅输出一次。例如,带有Select,where,map,flatmap,filter,join等的query操作支持append模式。
Complete mode 每次trigger都会将整个结果表输出到sink。这个是针对聚合操作的。
Update mode 仅仅是自上次trigger之后结果表有变更的行会输出到sink。在以后的版本中会有更详细的信息。

StructuredStreaming目前支持的sink只有FileSink、KafkaSink、ConsoleSink、MemorySink和ForeachSink。

其中最常用的是ForeachSink。


image.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352