python丢失指导入导出数据

14课时 Pandas 如何处理丢失数据。

很多消失数据。用np.nan。

.dropna(axis=0,how=‘any’) #how={‘any’,‘all’} axis=0是丢掉行。How =any是只要有任何一个为nan就丢掉整行了。后面的all 是整个行的所有列都为nan才丢失这个行,默认是how=any。 Axis=1是丢掉列。.dropna(axis=0,how=‘all’)

注:.dropna 这里没有n。

并且最后要打印 print(-.dropna函数)

Print(np.any(df.isnull()==True)#就可以很快的查看是否丢失了数据,最后会返回时否为true,会。

                    15课时 Pandas导入导出数据

1 如何调用已经存储好的数据表格类

2 excel一般用csv

3 data=pd.read_csv(‘名.csv’)

Print(data)             #默认加行索引,今后可以用这个索引和column来调用数据 要用data=来命

data.to_pickle(‘studen.picklet’) #存储  运行此行命令即可。


4 jupyter 工作路径的查看

在cmd中,​输入“ipython notebook”或“jupyter notebook”打开notebook,此时cmd的当前路径即为notebook的工作路径。

另外,可通过设置config文件的方法来设置固定的工作路径

16课时 Pandasconcat 合并

合并多个dataframe 可以横向纵行,即可columns的命不一样

用pandas 和numpy

#concatenating

df1=pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'])

df2=pd.DataFrame(np.ones((3,4))*1,columns=['a','b','c','d'])

df3=pd.DataFrame(np.ones((3,4))*2,columns=['a','b','c','d'])

print(df1)

print(df2)

print(df3)


res=pd.concat([df1,df2,df3],axis=0,ignore_index=True)  #pd中 记住 axis的代表,合并函数,axis=0 代表行都合并成多行,在行上进行合并,axis=1代表在列上面进行合并, ignore 可以让前面的index重新顺序,而非之前的index。

print(res)

# join,[‘inner’,’outer’]

默认是outer 就是说列上面没有的写为空

而inner是合并的时候,只合并列里面都有列,行保持不变累加。

df1=pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'])

df2=pd.DataFrame(np.ones((3,4))*1,columns=['e','b','c','d'])

res=pd.concat([df1,df2],join='inner',ignore_index=True)

print(res)

#join_axes

df1=pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'],index=[1,2,3])

df2=pd.DataFrame(np.ones((3,4))*1,columns=['b','c','d','e'],index=[2,3,4])

res=pd.concat([df1,df2],axis=1,join_axes=[df1.index])

print(res)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,640评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,254评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,011评论 0 355
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,755评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,774评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,610评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,352评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,257评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,717评论 1 315
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,894评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,021评论 1 350
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,735评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,354评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,936评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,054评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,224评论 3 371
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,974评论 2 355

推荐阅读更多精彩内容