[PyTorch]案例 fashion-MNIST(28*28像素图)

一、库&数据集

  1. 数据集简介
  • 样本数:60,000
  • 样本(图片像素):28*28
  • 10个类别:
    0 T-shirt/top
    1 Trouser
    2 Pullover
    3 Dress 礼服
    4 Coat 外套
    5 Sandal 凉鞋
    6 Shirt 衬衫
    7 Sneaker 运动鞋
    8 Bag
    9 Ankle boot 高跟鞋


    样本
import torch
from torchvision import datasets, transforms

#Transform for the data
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, ), (0.5, ))])

#training data
trainset = datasets.FashionMNIST('~/.pytorch/F_MNIST_data', download=True, train=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)

#test data
testset= datasets.FashionMNIST('~/.pytorch/F_MNIST_data', download=True, train=False, transform=transform)
testloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
  1. 目标
    指标:训练损失低于某一阈值

二、模型的基本框架

  1. 搭建网络结构
#方法1)nn.Sequential()
model = nn.Sequential(nn.Linear(784, 196)
                      nn.ReLU(),
                      nn.Linear(196, 49),
                      nn.ReLU(),
                      nn.Linear(49, 10))

#方法2)封装成类(继承nn.Module)
class Classifier(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(784, 256)
        self.fc2 = nn.Linear(256, 128)
        self.fc3 = nn.Linear(128, 64)
        self.fc4 = nn.Linear(64, 10)

    def forward(self, x):
        x = x.view(x.shape[0], -1)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.relu(self.fc3(x))
        x = F.log_softmax(self.fc4(x), dim=1)
        return x
  1. 训练+验证测试
  1. 目标函数(损失函数)
    nn.CrossEntropyLoss()

  2. 优化器(权值更新)
    optim.SGD()
    optim.Adam()

#目标函数(损失函数)
criterion = nn.CrossEntropyLoss() #相当于 nn.LogSoftmax(dim=1) & nn.NLLLoss()
#优化器(权值更新)
optimizer = optim.SGD(model.parameters(), lr=0.03)

#模型训练
epoch = 5
for e in range(epoch):
    running_loss = 0
    for images, labels in trainloader:
        images = images.view(images.shape[0], -1)

        optimizer.zero_grad()

        logits = model(images)
        loss = criterion(logits, labels)
        loss.backward()

        optimizer.step()

        running_loss += loss.item()
    print("Training loss: {} \n" .format(running_loss/len(trainloader))) 


#验证测试
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
import helper #自定义模块

dataiter = iter(testloader)
images, labels = dataiter.next()
img = images[0]
img = img.resize_(1, 784) #行向量

ps = F.softmax(model(img), dim=1)  #model 是nn.Sequantial()网络 缺少输出层

#可视化
helper.view_classify(img.resize_(1, 28, 28), ps, version='Fashion')
测试结果

三、模型优化

  1. 针对过拟合
  • 方法1)早期停止early-stopping@复杂度图
    比如8-10次迭代即可

  • 方法2)dropout
    随机关闭输入(针对中间隐藏层),防止一部分权值“拥兵自重”

#dropout完整代码
class Network(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(784, 196)
        self.fc2 = nn.Linear(196, 49)
        self.fc3 = nn.Linear(49, 10)

        self.dropout = nn.Dropout(p=0.25)

    def forward(self, x):
        x = x.view(x.shape[0], -1)

        x = self.dropout(F.relu(self.fc1(x)))
        x = self.dropout(F.relu(self.fc2(x)))
        x = F.log_softmax(self.fc3(x), dim=1)
        return x


#训练模型
model = Network()
criterion = nn.NLLLoss()
optimizer = optim.Adam(model.parameters(), lr=0.002)

epochs = 6
train_losses, test_losses = [],[]
for e in range(epochs):
    running_loss = 0
    for images, labels in trainloader:
        optimizer.zero_grad()
        log_ps = model(images)
        loss = criterion(log_ps, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()

    test_loss = 0
    accuracy = 0
    with torch.no_grad():
        model.eval() #设置dropout

        for images, labels in testloader:
            log_ps = model(images) #结果维度 64*10
            test_loss += criterion(log_ps, labels)

            ps = torch.exp(log_ps)
            tp_ps, tp_class = ps.topk(1, dim=1) #结果维度 64*1
            equals = (tp_class == labels.view(*tp_class.shape))
            accuracy += torch.mean(equals.type(torch.FloatTensor))

    train_losses.append(running_loss/len(trainloader))
    test_losses.append(test_loss/len(testloader))

    model.train()

    print("{}" .format())


#验证测试
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
import helper #自定义模块

model.eval() #测试环节,关闭dropout

dataiter = iter(testloader)
images, labels = dataiter.next()
img = images[0]
img = img.view(1, 784) #行向量

with torch.no_grad():
    output = model(img)

ps = torch.exp(output)  

#可视化
helper.view_classify(img.view(1, 28, 28), ps, version='Fashion')
dropout后的训练结果

References

nn.Module类详解

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,682评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,277评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,083评论 0 355
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,763评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,785评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,624评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,358评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,261评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,722评论 1 315
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,900评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,030评论 1 350
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,737评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,360评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,941评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,057评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,237评论 3 371
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,976评论 2 355

推荐阅读更多精彩内容