面试知识点总结一:计算机基础

摘要:犹记得校招面试累并痛着,收割Offer,一方面是实力,一方面是运气。同时面试需要不断积累,熟悉套路,有重点的准备,本文记录了之前整理的计算机基础题目,方便临阵磨枪,面试突击,希望能对后来者有所帮助。
重要:本文搜集自互联网,仅供学习交流,由于原出处已不记得,如有侵权之处请联系立即删除。

HTTP与HTTPS

  1. HTTP是HTTP协议运行在TCP之上。所有传输的内容都是明文,客户端和服务器端都无法验证对方的身份.
  2. HTTPS是HTTP运行在SSL/TLS之上,SSL/TLS运行在TCP之上。所有传输的内容都经过加密,加密采用对称加密,但对称加密的密钥用服务器方的证书进行了非对称加密。此外客户端可以验证服务器端的身份,如果配置了客户端验证,服务器方也可以验证客户端的身份。
  3. HTTPS协议需要到ca申请证书,一般免费证书很少,需要交费。
  4. http和https使用的是完全不同的连接方式用的端口也不一样,前者是80,后者是443。
  5. http的连接很简单,是无状态的。
  6. TTPS协议是由SSL+HTTP协议构建的可进行加密传输、身份认证的网络协议 要比http协议安全。

HTTP请求与响应

  1. http请求:请求行(请求类型,请求地址,协议版本)请求头(服务器用到的有用信息,如正文长度,语言类型等)消息正文
  2. 响应:响应行(协议版本,状态吗等)响应头(location,编码方式,响应正文长度,content-type等)响应正文;常用状态吗如下:
    • 200 ok 请求成功
    • 300 Mutile Choice 请求文档在多个位置能找到,客户端选择重定向
    • 303 查看其它位置(get方式);301永久移动到新位置,get方式重定向
    • 400 Bad Request 请求语法错误,服务器无法解析
    • 403 进制访问 服务器拒绝请求
    • 404 Not Found 请求资源不存在
    • 405 请求方法不允许;408 请求超时
    • 500 服务器出错
    • 503 服务器过载维护未响应,服务器当前不能处理请求,一段时间后可恢复正常
    • 505 服务器不支持改http版本

操作系统什么情况下会死锁

  1. 产生四所的必要条件
    • 互斥条件。一个资源一次只能被一个进程所使用,即是排它性使用
    • 不可抢占条件。一个资源仅能被占有它的进程所释放,而不能被别的进程强占。
    • 占有且申请条件。进程已经保持了至少一个资源,但又提出了新的资源要求,而该资源又已被其它进程占有,此时请求进程阻塞,但又对已经获得的其它资源保持不放
    • 循环等待条件。当每类资源只有一个时,在发生死锁时,必然存在一个进程-资源的环形链。
  2. 死锁解除
    • 方法1:强制性地从系统中撤消一个或多个死锁的进程以断开循环等待链,并收回分配给终止进程的全部资源供剩下的进程使用。
    • 方法2:使用一个有效的挂起和解除机构来挂起一些死锁的进程,其实质是从被挂起的进程那里抢占资源以解除死锁。
    • 银行家算法,该方法允许进程动态地申请资源,系统在进行资源分配之前,先计算资源分配的安全性。若此次分配不会导致系统从安全状态向不安全状态转换,便可将资源分配给进程;否则不分配资源,进程必须阻塞等待。从而避免发生死锁。

进程间通信有哪几种方式

  • 管道(PIPE):管道可用于具有亲缘关系进程间的通信,允许一个进程和另一个与它有共同祖先的进程之间进行通信。
  • 命名管道(FIFO):命名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信。命名管道在文件系统中有对应的文件名。命名管道通过命令mkfifo或系统调用mkfifo来创建。
  • 信号(Signal):信号是比较复杂的通信方式,用于通知接受进程有某种事件发生,除了用于进程间通信外,进程还可以发送信号给进程本身。
  • 消息队列(MessageQueue):消息队列是消息的链接表,包括Posix消息队列system V消息队列。有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息。消息队列克服了信号承载信息量少,管道只能承载无格式字节流以及缓冲区大小受限等缺限。
  • 共享内存(SharedMemory):使得多个进程可以访问同一块内存空间,是最快的可用IPC形式。是针对其他通信机制运行效率较低而设计的。往往与其它通信机制,如信号量结合使用,来达到进程间的同步及互斥。
  • 内存映射(mapped memory):内存映射允许任何多个进程间通信,每一个使用该机制的进程通过把一个共享的文件映射到自己的进程地址空间来实现它。
  • 信号量(semaphore):主要作为进程间以及同一进程不同线程之间的同步手段。
  • 套接口(Socket):更为一般的进程间通信机制,可用于不同机器之间的进程间通信。起初是由Unix系统的BSD分支开发出来的,但现在一般可以移植到其它类Unix系统上:Linux和System V的变种都支持套接字。

TCP三次握手协议,四次挥手

  1. 三次握手过程
  • 第一次握手:Client将标志位SYN置为1,随机产生一个值seq=J,并将该数据包发送给Server,Client进入SYN_SENT状态,等待Server确认
  • 第二次握手:Server收到数据包后由标志位SYN=1知道Client请求建立连接,Server将标志位SYN和ACK都置为1,ack (number )=J+1,随机产生一个值seq=K,并将该数据包发送给Client以确认连接请求,Server进入SYN_RCVD状态。
  • 第三次握手:Client收到确认后,检查ack是否为J+1,ACK是否为1,如果正确则将标志位ACK置为1,ack=K+1,并将该数据包发送给Server,Server检查ack是否为K+1,ACK是否为1,如果正确则连接建立成功,Client和Server进入ESTABLISHED状态,完成三次握手,随后Client与Server之间可以开始传输数据了。


  1. 四次挥手
    由于TCP连接时全双工的,因此,每个方向都必须要单独进行关闭,这一原则是当一方完成数据发送任务后,发送一个FIN来终止这一方向的连接,收到一个FIN只是意味着这一方向上没有数据流动了,即不会再收到数据了,但是在这个TCP连接上仍然能够发送数据,直到这一方向也发送了FIN。首先进行关闭的一方将执行主动关闭,而另一方则执行被动关闭,上图描述的即是如此。
  • 第一次挥手:Client发送一个FIN,用来关闭Client到Server的数据传送,Client进入FIN_WAIT_1状态。
  • 第二次挥手:Server收到FIN后,发送一个ACK给Client,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号),Server进入CLOSE_WAIT状态。
  • 第三次挥手:Server发送一个FIN,用来关闭Server到Client的数据传送,Server进入LAST_ACK状态。
  • 第四次挥手:Client收到FIN后,Client进入TIME_WAIT状态,接着发送一个ACK给Server,确认序号为收到序号+1,Server进入CLOSED状态,完成四次挥手。


  1. TCP为甚么三次握手,四次挥手
  • 为什么TCP连接需要三次握手,两次不可以吗,为什么 ?
    • 为了防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误。已失效的连接请求报文段”的产生在这样一种情况下:client发出的第一个连接请求报文段并没有丢失,而是在某个网络结点长时间的滞留了,以致延误到连接释放以后的某个时间才到达server。本来这是一个早已失效的报文段。但server收到此失效的连接请求报文段后,就误认为是client再次发出的一个新的连接请求。于是就向client发出确认报文段,同意建立连接。假设不采用“三次握手”,那么只要server发出确认,新的连接就建立了。由于现在client并没有发出建立连接的请求,因此不会理睬server的确认,也不会向server发送数据。但server却以为新的运输连接已经建立,并一直等待client发来数据。这样,server的很多资源就白白浪费掉了。采用“三次握手”的办法可以防止上述现象发生。例如刚才那种情况,client不会向server的确认发出确认。server由于收不到确认,就知道client并没有要求建立连接。
  • 为什么四次挥手?
    • 这是因为服务端在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。而关闭连接时,当收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,己方也未必全部数据都发送给对方了,所以己方可以立即close,也可以发送一些数据给对方后,再发送FIN报文给对方来表示同意现在关闭连接,因此,己方ACK和FIN一般都会分开发送。
  1. TCP和UDP区别
  • UDP 是无连接的,即发送数据之前不需要建立连接。
  • UDP使用尽最大努力交付,即不保证可靠交付,同时也不使用拥塞控制。
  • UDP 是面向报文的。UDP 没有拥塞控制,很适合多媒体通信的要求。
  • UDP 支持一对一、一对多、多对一和多对多的交互通信。
  • UDP 的首部开销小,只有 8 个字节。
  • TCP 是面向连接的运输层协议。
  • 每一条 TCP 连接只能有两个端点(endpoint),每一条 TCP连接只能是点对点的(一对一)。
  • TCP 提供可靠交付的服务。
  • TCP提供全双工通信。
  • TCP是面向字节流。

进程和线程的区别

  1. 程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位。
  2. 线程是进程的一个实体, 是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源。
  3. 一个线程可以创建和撤销另一个线程,同一个进程中的多个线程之间可以并发执行。
  4. 进程和线程的主要差别在于它们是不同的操作系统资源管理方式。进程有独立的地址空间,一个进程崩溃后,在保护模式下不会对其它进程产生影响,而线程只是一个进程中的不同执行路径。线程有自己的堆栈和局部变量,但线程之间没有单独的地址空间,一个线程死掉就等于整个进程死掉,所以多进程的程序要比多线程的程序 健壮,但在进程切换时,耗费资源较大,效率要差一些。但对于一些要求同时进行并且又要共享某些变量的并发操作,只能用线程,不能用进程。
  5. 进程的几种状态
    • 注意:创建和退出不是进程的状态。阻塞和就绪的区别:阻塞是等待除CPU以外的资源,而就绪等待的是CPU资源。
    • 就绪——执行:对就绪状态的进程,当进程调度程序按一种选定的策略从中选中一个就绪进程,为之分配了处理机后,该进程便由就绪状态变为执行状态;
    • 执行——阻塞:正在执行的进程因发生某等待事件而无法执行,则进程由执行状态变为阻塞状态,如进程提出输入/输出请求而变成等待外部设备传输信息的状态,进程申请资源(主存空间或外部设备)得不到满足时变成等待资源状态,进程运行中出现了故障(程序出错或主存储器读写错等)变成等待干预状态等等;
    • 阻塞——就绪:处于阻塞状态的进程,在其等待的事件已经发生,如输入/输出完成,资源得到满足或错误处理完毕时,处于等待状态的进程并不马上转入执行状态,而是先转入就绪状态,然后再由系统进程调度程序在适当的时候将该进程转为执行状态;
    • 执行——就绪:正在执行的进程,因时间片用完而被暂停执行,或在采用抢先式优先级调度算法的系统中,当有更高优先级的进程要运行而被迫让出处理机时,该进程便由执行状态转变为就绪状态。

Window内存管理方式:段存储,页存储,段页存储

  1. 页式和段式系统有许多相似之处。比如,两者都采用离散分配方式,且都通过地址映射机构来实现地址变换。但概念上两者也有很多区别,主要表现在:
  2. 页是信息的物理单位,分页是为了实现离散分配方式,以减少内存的外零头,提高内存的利用率。或者说,分页仅仅是由于系统管理的需要,而不是用户的需要。段是信息的逻辑单位,它含有一组其意义相对完整的信息。分段的目的是为了更好地满足用户的需要。
  3. 页的大小固定且由系统决定,把逻辑地址划分为页号和页内地址两部分,是由机器硬件实现的。段的长度不固定,且决定于用户所编写的程序,通常由编译系统在对源程序进行编译时根据信息的性质来划分。
  4. 页式系统地址空间是一维的,即单一的线性地址空间,程序员只需利用一个标识符,即可表示一个地址。分段的作业地址空间是二维的,程序员在标识一个地址时,既需给出段名,又需给出段内地址。

电脑上访问一个网页,整个过程是怎么样的

  1. 客户端查询DNS,获取域名对应的IP地址
  2. ARP或RARP获得IP与物理地址的对应,找到服务器物理地址
  3. 确定服务器地址后,浏览器发起三次握手建立TCP连接
  4. TCP连接建立后,浏览器就可以向服务端发起HTTP请求
  5. 服务器收到请求后,根据路径,后端

IP地址分类

  1. A类IP地址:一个A类IP地址由1字节的网络地址和3字节主机地址组成,网络地址的最高位必须是“0”, 地址范围从1.0.0.0 到126.0.0.0。可用的A类网络有126个,每个网络能容纳1亿多个主机。
  2. B类IP地址:一个B类IP地址由2个字节的网络地址和2个字节的主机地址组成,网络地址的最高位必须是“10”,地址范围从128.0.0.0到191.255.255.255。可用的B类网络有16382个,每个网络能容纳6万多个主机 。
  3. C类IP地址:一个C类IP地址由3字节的网络地址和1字节的主机地址组成,网络地址的最高位必须是“110”。范围从192.0.0.0到223.255.255.255。C类网络可达209万余个,每个网络能容纳254个主机。
  4. D类地址用于多点广播(Multicast)。D类IP地址第一个字节以“lll0”开始,它是一个专门保留的地址。它并不指向特定的网络,目前这一类地址被用在多点广播(Multicast)中。多点广播地址用来一次寻址一组计算机,它标识共享同一协议的一组计算机。
  5. E类IP地址:以“llll0”开始,为将来使用保留。 全零(“0.0.0.0”)地址对应于当前主机。全“1”的IP地址(“255.255.255.255”)是当前子网的广播地址。
  6. 在IP地址3种主要类型里,各保留了3个区域作为私有地址,也就是比较常用的ip地址。其地址范围如下:
    • A类地址:10.0.0.0~10.255.255.255
    • B类地址:172.16.0.0~172.31.255.255
    • C类地址:192.168.0.0~192.168.255.255

Lunix常用命令

uname -a          # 查看内核/操作系统/CPU信息
cat /proc/cpuinfo   # 查看CPU信息
ps aux  # 查看系统所有的进程数据
ps ax       # 查看不与terminal有关的所有进程
ps -lA  # 查看系统所有的进程数据
ps axjf # 查看连同一部分进程树状态
free 显示出系统的空闲内存,已占用内存,可利用交换内存 free –m 转成MB
top 默认按照cpu的占用情况,显示占用内存较大的进程
top –u 查看用户的cpu使用排名情况
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,948评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,371评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,490评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,521评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,627评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,842评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,997评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,741评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,203评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,534评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,673评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,339评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,955评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,770评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,000评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,394评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,562评论 2 349

推荐阅读更多精彩内容