极大似然估计MLE

〇、说明

极大似然估计(Maximum Likelihood Estimation,MLE),也称最大似然估计。统计学中,极大似然估计是重要的参数估计方法;机器学习领域,也经常看到直接使用极大似然估计以及使用极大似然思想的方法。

在这篇笔记里,主要涉及极大似然的思想和非参数极大似然估计NPMLE。

如有错误疏漏,烦请指出。如要转载,请联系笔者,hpfhepf@gmail.com。

一、常规极大似然估计

1.1、问题描述

在参数估计[1]任务中,极大似然估计在给定样本已知概率分布(密度)条件下,估计分布参数的重要方法。

(在机器学习中,会用到未知概率分布(密度)的极大似然估计,见下文)

1.2、极大似然思想

极大似然估计的核心思想,就是估计出使样本出现概率最大的参数作为分布(密度)参数;从另一个角度,极大似然估计认为已经发生的(这些样本出现)就是是概率最大的,从而求出分布(密度)参数。

1.3、极大似然估计

极大似然估计在绝大多数概率论或统计课程中都有详细的介绍,我这里就不赘述了,具体参见课本和网上资料。

这里贴几个还不错的网上资料:

维基百科《极大似然估计》[2]

《最大似然估计》[3]

二、非参数极大似然估计

2.1、缘起

笔者在参考李航博士《统计学习方法》[4]学习最大熵模型,遇到条件概率P(Y|X)的对数似然函数(6.2.4节)时,真的是一头雾水。如下图

[4]

一直接触的极大似然估计都是已知模型,通过样本求参数。而这个似然函数,模型未知,参数未知,更不知道是怎么来的,懵圈了。。。

2.2、搜寻

为了搞清楚这个问题,查阅了《统计学习方法》的参考文献《A Maximum Entropy Approach to Natural Language Processing》[5],也没有搞清楚这个问题。

后来各种关键字在google上搜,终于搜到了比较靠谱的信息,大概如下:

https://www.stat.washington.edu/thompson/S581_04/Notes/chapter_8.pdf[6]

http://www.ms.uky.edu/~mai/sta709/Owen2005.pdf[7]

http://statweb.stanford.edu/~owen/empirical/[8]

这大概是一个经验似然(Empirical Likelihood)问题,但是有点艰深,笔者并不打算深入挖掘下去,只是从机器学习数学基础的角度搞清楚上述公式的由来。笔者看到了[4]的第一个公式,终于明白了李航博士书中公式的由来,如下。

2.3、NPMLE

非参数极大似然估计(Non-Parametric Maximum Likelihood Estimation,NPMLE),在大多数初级的概率论课本里是没有的。

这里根据常规MLE的假设和建模过程,来简略推导NPMLE的似然函数。下图[3]为常规MLE的假设和似然函数建模过程。

[3]

参考常规MLE,假设非参数的分布有相同的采样,但没有参数。


附录

参考

[1]、百度百科《参数估计》

[2]、维基百科《极大似然估计》

[3]、《最大似然估计》

[4]、李航《统计学习方法》

[5]、Adam L. Berger, Stephen A. Della Pietra《A Maximum Entropy Approach to Natural Language Processing》

[6]、https://www.stat.washington.edu/thompson/S581_04/Notes/chapter_8.pdf

[7]、http://www.ms.uky.edu/~mai/sta709/Owen2005.pdf

[8]、http://statweb.stanford.edu/~owen/empirical/

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,968评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,601评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,220评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,416评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,425评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,144评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,432评论 3 401
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,088评论 0 261
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,586评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,028评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,137评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,783评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,343评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,333评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,559评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,595评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,901评论 2 345

推荐阅读更多精彩内容