王梓瑜讲义1.19 因式分解练习

因式分解应用


例题:已知对于任意的大于2的整数n, n^{5}-5 n^{3}+4 n都是正整数m的倍数,求m的最大值。


(n-2)(n-1)(n)(n+1)(n+2)

这是5个连续整数的乘积,一定是5!=120的倍数


排列数:从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,从n个不同元素中取出m个元素的排列数A_{n}^{m}=n(n-1)(n-2) \dots \dots \cdot(n-m+1)=n ! /(n-m) !

组合数:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合,从n个不同元素中取出m个元素的组合数C_{n}^{m}=n(n-1)(n-2) \dots \dots \cdot(n-m+1)/m!=n ! /m!(n-m) !


排列数可以看成n个人找m个拍合照,组合可以看成n个人找m个值日。拍合照需要注意顺序,值日不用。


因为组合数一定是整数,所以n(n-1)(n-2) \dots \cdots \cdot(n-m+1) / m !是整数。也就是分子是分母的倍数。所以任何m个连续整数的乘积都是m!的倍数。

所以这题答案是120。





例题:计算:\frac{\left(2^{4}+\frac{1}{4}\right)\left(4^{4}+\frac{1}{4}\right)\left(6^{6}+\frac{1}{4}\right)\left(8^{4}+\frac{1}{4}\right)\left(10^{4}+\frac{1}{4}\right)}{\left(1^{4}+\frac{1}{4}\right)\left(3^{4}+\frac{1}{4}\right)\left(5^{4}+\frac{1}{4}\right)\left(7^{4}+\frac{1}{4}\right)\left(9^{4}+\frac{1}{4}\right)}


错位相消



例题:若a是非负整数,则a^{4}-3 a^{2}+9是合数还是素数?


首先因式分解a^{4}-3 a^{2}+9=(a^2-3a+3)(a^2+3a+3),如果是素数,较小的那个是1,所以a^2-3a+3=1,解出a=1,2。分别对应原式是7,13是素数,除此以外是合数。





例题:若a=2016, b=2017, c=2018,求a^{2}+b^{2}+c^{2}-a b-b c-a c

(并不是因式分解,但是一个很常见的代数式)




例题:如果x+y+z=3,求\frac{(x-1)(y-1)(z-1)}{(x-1)^{3}+(y-1)^{3}+(z-1)^{3}}

本题两个点,一个是一直出现x-1,y-1,z-1,可以做个简单的换元

另外就是a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)要牢记

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,427评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,551评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,747评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,939评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,955评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,737评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,448评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,352评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,834评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,992评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,133评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,815评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,477评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,022评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,147评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,398评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,077评论 2 355

推荐阅读更多精彩内容