聊聊高并发(八)实现几种自旋锁(三)

聊聊高并发(七)实现几种自旋锁(二) 这篇中介绍了两种队列锁,一种是有界队列锁,一种是无界队列锁。其中无界队列锁CLHLock采用了链表的方式来组织多线程,使用了两个ThreadLocal做指针指向自身的node和前一个node。它的特点是在前一个node的lock状态自旋,当前一个node的锁释放时,会自动通知下一个线程去获得锁。

CLHLock是无饥饿的,保证先来先服务公平性,只有少量的缓存一致性流量,在SMP系统结构中,是一种比较完善的锁。但是在没有cache的NUMA系统架构中,由于在前一个节点的lock状态上自旋,NUMA架构中处理器访问本地内存的速度高于通过网络访问其他节点的内存,所以CLHLock在NUMA架构上不是最优的自旋锁。

这篇介绍一种适合在无cache的NUMA系统架构中比较完善的队列锁MCSLock。它的特点是:

1. 使用1个ThreadLocal指针来做链表,由QNode自身维护下一个节点的指针

2. 线程在自身节点自旋,而不是CLHLock那样在前一个节点自旋

3. 在释放锁时需要判断是否是唯一节点,需要做一次CAS操作,如果不是唯一节点,要稍微等待链表关系的建立

package com.zc.lock;
 
import java.util.concurrent.atomic.AtomicReference;
 
/**
 * 无界队列锁,使用一个链表来组织线程
 * 假设L把锁,n个线程,那么锁的空间复杂度为O(L+n)
 * **/
public class MCSLock implements Lock{
    // 原子变量指向队尾
    private AtomicReference<QNode> tail;
    // 两个指针,一个指向自己的Node,一个指向前一个Node
    ThreadLocal<QNode> myNode;
    
    public MCSLock(){
        tail = new AtomicReference<QNode>(null);
        myNode = new ThreadLocal<QNode>(){
            protected QNode initialValue(){
                return new QNode();
            }
        };
    }
    
    @Override
    public void lock() {
        QNode node = myNode.get();
        // CAS原子操作,保证原子性
        QNode preNode = tail.getAndSet(node);
        // 如果preNode等于空,证明是第一个获取锁的
        if(preNode != null){
            node.lock = true;
            preNode.next = node;
            // 对线程自己的node进行自旋,对无cache的NUMA系统架构来说,访问本地内存速度优于其他节点的内存
            while(node.lock){
                
            }
        }
    }
 
    @Override
    public void unlock() {
        QNode node = myNode.get();
        if(node.next == null){
            // CAS操作,判断是否没有新加入的节点
            if(tail.compareAndSet(node, null)){
                // 没有新加入的节点,直接返回
                return;
            }
            // 有新加入的节点,等待设置链关系
            while(node.next == null){
                
            }
        }
        // 通知下一个节点获取锁
        node.next.lock = false;
        // 设置next节点为空,为下次获取锁清理状态
        node.next = null;
    }
    
    public static class QNode {
        volatile boolean lock;
        volatile QNode next;
    }
    
    public String toString(){
        return "MCSLock";
    }
}
 

下面采用和上一篇同样的测试用例来测试MCSLock的正确性

package com.zc.lock;
 
public class Main {
    //private static Lock lock = new TimeCost(new ArrayLock(150));
    
    private static Lock lock = new MCSLock();
    
    //private static TimeCost timeCost = new TimeCost(new TTASLock());
    
    private static volatile int value = 0;
    public static void method(){
        lock.lock();
        System.out.println("Value: " + ++value);
        lock.unlock();
    }
    
    public static void main(String[] args) {
        for(int i = 0; i < 50; i ++){
            Thread t = new Thread(new Runnable(){
    
                @Override
                public void run() {
                    method();
                }
                
            });
            t.start();
        }
    }
 
}

测试结果:顺序地打印出volatile变量++的结果,证明同一时刻只有一个线程在做volatile++操作,证明加锁成功。

Value: 1Value: 2Value: 3Value: 4Value: 5Value: 6Value: 7Value: 8Value: 9Value: 10Value: 11Value: 12Value: 13Value: 14Value: 15Value: 16Value: 17Value: 18Value: 19Value: 20Value: 21Value: 22Value: 23Value: 24Value: 25Value: 26Value: 27Value: 28Value: 29Value: 30Value: 31Value: 32Value: 33Value: 34Value: 35Value: 36Value: 37Value: 38Value: 39Value: 40Value: 41Value: 42Value: 43Value: 44Value: 45Value: 46Value: 47Value: 48Value: 49Value: 50
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,607评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,239评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,960评论 0 355
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,750评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,764评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,604评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,347评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,253评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,702评论 1 315
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,893评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,015评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,734评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,352评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,934评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,052评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,216评论 3 371
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,969评论 2 355

推荐阅读更多精彩内容