如何在Python中实现数据分箱

1 数据分箱
数据分箱技术在Pandas官方给出的定义:Bin values into discrete intervals,是指将值划分到离散区间。好比不同大小的苹果归类到几个事先布置的箱子中;不同年龄的人划分到几个年龄段中。

这种技术在数据处理时会很有用。

2 例子
我们先来看例子

import numpy as np
import pandas as pd
ages = np.array([5,10,36,12,77,89,100,30,1]) #年龄数据
1
2
3

现把数据划分成 3 个区间,并打上老、中、青的标签。Pandas提供了易用的API,很容易就可以实现。

pd.cut(ages, 3, labels=['青','中','老'])
1

结果如下,一行代码便实现。

[青, 青, 中, 青, 老, 老, 老, 青, 青]
1

cut在操作时,统计了一维数组的最小、最大值,得到一个区间长度,因为需要划分3个区间,所以会得到三个均匀的区间,如下。

pd.cut(ages, 3 )
>>>区间如下:
Categories (3, interval[float64]): 
[(0.901, 34.0] < (34.0, 67.0] < (67.0, 100.0]]
1
2
3
4

给定数据的最小值为1,区间默认是左开右闭,所以为了囊括1,需要将最靠左的区间向左延长0.1%(总区间长度),默认精度为小数点后3位。

3 函数原型
通过以上例子初步认识cut后,再分析cut原型就比较容易。

参数含义如下:
x:被切分的类数组数据,注意必须是1维;
bins:简单理解为分箱规则,就是桶。支持int 标量、序列;
right:表示是否包含区间的右边界,默认包含;
labels:分割后的bins打标签;
retbins:表示是否将分割后的bins返回,默认不返回。如为True,则:

-----------------------------------------------------
注:我这有个学习基地,里面有很多学习资料,感兴趣的+Q群:895 797 751,
-----------------------------------------------------

    array([   0.901,   34.   ,   67.   ,  100.   ]))
1
2
3
4
5
include_lowest :区间的左边是开还是闭,默认为开;
duplicates;是否允许重复区间。raise:不允许,drop:允许。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,454评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,553评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,921评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,648评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,770评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,950评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,090评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,817评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,275评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,592评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,724评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,409评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,052评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,815评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,043评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,503评论 2 361
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,627评论 2 350

推荐阅读更多精彩内容