Stanford机器学习---第九讲. 聚类

原文:http://blog.csdn.net/abcjennifer/article/details/7914952

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。内容大多来自Standford公开课machine learning中Andrew老师的讲解和其他书籍的借鉴。(https://class.coursera.org/ml/class/index

第九讲. 聚类——Clustering

===============================

(一)、什么是无监督学习?

(二)、KMeans聚类算法

(三)、Cluster问题的(distortion)cost function

(四)、如何选择初始化时的类中心

(五)、聚类个数的选择

=====================================

(一)、什么是无监督学习

之前的几章我们只涉及到有监督学习,本章中,我们通过讨论另一种Machine learning方式:无监督学习。首先呢,我们来看一下有监督学习与无监督学习的区别。

给定一组数据(input,target)为Z=(X,Y)。

有监督学习:最常见的是regression & classification。

regression:Y是实数vector。回归问题,就是拟合(X,Y)的一条曲线,使得下式cost function L最小。

classification:Y是一个finite number,可以看做类标号。分类问题需要首先给定有label的数据训练分类器,故属于有监督学习过程。分类问题中,cost function L(X,Y)是X属于类Y的概率的负对数。

,其中fi(X)=P(Y=i | X);

无监督学习:无监督学习的目的是学习一个function f,使它可以描述给定数据的位置分布P(Z)。 包括两种:density estimation & clustering.

density estimation就是密度估计,估计该数据在任意位置的分布密度

clustering就是聚类,将Z聚集几类(如K-Means),或者给出一个样本属于每一类的概率。由于不需要事先根据训练数据去train聚类器,故属于无监督学习。

PCA和很多deep learning算法都属于无监督学习。

好了,大家理解了吧,unsupervised learning也就是不带类标号的机器学习。

练习:

=====================================

(二)、K-Means聚类算法

KMeans是聚类算法的一种,先来直观的看一下该算法是怎样聚类的。给定一组数据如下图所示,K-Means算法的聚类流程如图:

图中显示了Kmeans聚类过程,给定一组输入数据{x(1),x(2),...,x(n)}和预分类数k,算法如下:

首先随机指定k个类的中心U1~Uk,然后迭代地更新该centroid。

其中,C(i)表示第i个数据离那个类中心最近,也就是将其判定为属于那个类,然后将这k各类的中心分别更新为所有属于这个类的数据的平均值。

=====================================

(三)、Cluster问题的(distortion)cost function

在supervised learning中我们曾讲过cost function,类似的,在K-means算法中同样有cost function,我们有时称其为distortion cost function.

如下图所示,J(C,U)就是我们要minimize的function.

即最小化所有数据与其聚类中心的欧氏距离和。

再看上一节中我们讲过的KMeans算法流程,第一步为固定类中心U,优化C的过程:

第二步为优化U的过程:

这样进行迭代,就可以完成cost function J的优化。

练习:

这里大家注意,回归问题中有可能因为学习率设置过大产生随着迭代次数增加,cost function反倒增大的情况。但聚类是不会产生这样的问题的,因为每一次聚类都保证了使J下降,且无学习率做参数。

=====================================

(四)、如何选择初始化时的类中心

在上面的kmeans算法中,我们提到可以用randomly的方法选择类中心,然而有时效果并不是非常好,如下图所示:

fig.1. original data

对于上图的这样一组数据,如果我们幸运地初始化类中心如图2,

fig.2. lucky initialization

fig.3. unfortunate initialization

但如果将数据初始化中心选择如图3中的两种情况,就悲剧了!最后的聚类结果cost function也会比较大。针对这个问题,我们提出的solution是,进行不同initialization(50~1000次),每一种initialization的情况分别进行聚类,最后选取cost function J(C,U)最小的作为聚类结果。

=====================================

(五)、聚类个数的选择

How to choose the number of clusters? 这应该是聚类问题中一个头疼的part,比如KMeans算法中K的选择。本节就来解决这个问题。

最著名的一个方法就是elbow-method,做图k-J(cost function)如下:

若做出的图如上面左图所示,那么我们就找图中的elbow位置作为k的选定值,如果像右图所示并无明显的elbow点呢,大概就是下图所示的数据分布:

这种情况下需要我们根据自己的需求来进行聚类,比如Tshirt的size,可以聚成{L,M,S}三类,也可以分为{XL,L,M,S,XS}5类。需要大家具体情况具体分析了~

练习:

==============================================

小结

本章讲述了Machine learning中的又一大分支——无监督学习,其实大家对无监督学习中的clustering问题应该很熟悉了,本章中讲到了几个significant points就是elbow 方法应对聚类个数的选择和聚类中心初始化方法,值得大家投入以后的应用。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,311评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,339评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,671评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,252评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,253评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,031评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,340评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,973评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,466评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,937评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,039评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,701评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,254评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,259评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,485评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,497评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,786评论 2 345

推荐阅读更多精彩内容