HashMap实现原理

HashMap实现原理解读

原文链接:https://blog.csdn.net/fenglibing/article/details/91565912

HashMap是Java开发当中使用得非常多的一种数据结构,因为其可以快速的定位到需要查找到数据,其最快的速度可以达到O(1),最差的时候也可以达到O(n)。本文以Java8中的HashMap做为分析原型,因为不同的JDK版本中的HashMap,可能存在着底层实现上的不一样。

HashMap是通过数组存储所有的数据,每个元素所存放数组的下标,是根据该存储元素的key的Hash值与该数组的长度减去1做与运算,如下所示:

index = (length_of_array - 1) & hash_of_the_key;

数组中存放元素的数据结构使用了Node和TreeNode两种数据结构,在单个Hash值对应的存储元素小于8个时,默认值为Node的单向链表形式存储,当单个Hash值存储的元素大于8个时,其会使用TreeNode的数据结构存储。

因为在单个Hash值对应的元素小于等于8个时,其查询时间最差为O(8),但是当单个Hash值对应的元素大于8个时,再通过Node的单向链表的方式进行查询,速度上就会变得更慢了;这个时候HashMap就会将Node的普通节点转为TreeNode(红黑树)进行存储,这是由于TreeNode占用的空间大小约为常规节点的两倍,但是其查询速度可以得到保证,这个是通过空间换时间了。当TreeNode中包括的元素变得比较少时,为了存储空间的占用,也会转换为Node节点单向链表的方式实现,它们之间可以互相转换的。

Node:

static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
        ......
}

可以看到每个Node中包括了4个属性,分别为:

hash值:当前Node的Hash值
key:当前Node的key
value:当前Node的value
next:表示指向下一个Node的指针,相同hash值的Node,通过next进行遍历查找

TreeNode:

static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
        TreeNode(int hash, K key, V val, Node<K,V> next) {
            super(hash, key, val, next);
        }
        ......
}

可以看到TreeNode使用的是红黑树(Red Black Tree)的数据结构,红黑树是一种自平衡二叉查找树,在进行插入和删除操作时通过特定操作保持二叉查找树的平衡,从而获得较高的查找性能,即使在最坏情况运行时间也是非常良好的,并且在实践中是非常高效的,它可以在O(log n)时间内做查找、插入和删除等操作,这里的n 是树中元素的数目。

以下是一张关于HashMap存储结构的示意图:

image

写入数据(一切皆在注释中)

其方法如下:

//写入数据
public V put(K key, V value) {
    //首先根据hash方法,获取对应key的hash值,计算方法见后面
    return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    //判断用户存放元素的数组是否为空
    if ((tab = table) == null || (n = tab.length) == 0)
        //为空则进行初使化,并将初使化后的数组赋值给变量tab,数组的长值赋值给变量n
        n = (tab = resize()).length;
    //判断根据hash值与数组长度减1求与得到的下标,
    //从数组中获取元素并将其赋值给变量p(后续该变量p可以继续使用),并判断该元素是否存在
    if ((p = tab[i = (n - 1) & hash]) == null)
        //如果不存在则创建一个新的节点,并将其放到数组对应的下标中
        tab[i] = newNode(hash, key, value, null);
    else {//根据数组的下标取到了元素,并且该元素p且不为空,下面要判断p元素的类型是Node还是TreeNode
        Node<K,V> e; K k;
        //判断该数组对应下标取到的第一值是不是与正在存入值的hash值相同、
        //key相等(可能是对象,也可能是字符串),如果相等,则将取第一个值赋值给变量e
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        //判断取的对象是不是TreeNode,如果是则执行TreeNode的put方法
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {//是普通的Node节点,
            //根据next属性对元素p执行单向链表的遍历
            for (int binCount = 0; ; ++binCount) {
                //如果被遍历的元素最后的next为空,表示后面没有节点了,则将新节点与当前节点的next属性建立关系
                if ((e = p.next) == null) {
                    //做为当前节点的后面的一个节点
                    p.next = newNode(hash, key, value, null);
                    //判断当前节点的单向链接的数量(8个)是不是已经达到了需要将其转换为TreeNode了
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        //如果是则将当前数组下标对应的元素转换为TreeNode
                        treeifyBin(tab, hash);
                    break;
                }
                //判断待插入的元素的hash值与key是否与单向链表中的某个元素的hash值与key是相同的,如果是则退出
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        //判断是否找到了与待插入元素的hash值与key值都相同的元素
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            //判断是否要将旧值替换为新值
            if (!onlyIfAbsent || oldValue == null)
                //满足于未指定不替换或旧值为空的情况,执行将旧值替换为新值
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

Hash值的计算方法:

// 计算指定key的hash值,原理是将key的hash code与hash code无符号向右移16位的值,执行异或运算。
// 在Java中整型为4个字节32位,无符号向右移16位,表示将高16位移到低16位上,然后再执行异或运行,也 
// 就是将hash code的高16位与低16位进行异或运行。
// 小于等于65535的数,其高16位全部都为0,因而将小于等于65535的值向右无符号移16位,则该数就变成了 
// 32位都是0,由于任何数与0进行异或都等于本身,因而hash code小于等于65535的key,其得到的hash值 
// 就等于其本身的hash code。
static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

读取数据(一切皆在注释中)

public V get(Object key) {
        Node<K,V> e;
        //根据Key获取元素
        if ((e = getNode(hash(key), key)) == null)
            return null;
        if (accessOrder)
            afterNodeAccess(e);
        return e.value;
    }

    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        //if语句的第一个判断条件
        if ((tab = table) != null //将数组赋值给变量tab,将判断是否为null
            && (n = tab.length) > 0 //将数组的长值赋值给变量n
            && (first = tab[(n - 1) & hash]) != null) {//判断根据hash和数组长度减1的与运算,计算出来的的数组下标的第一个元素是不是为空
            //判断第一个元素是否要找的元素,大部份情况下只要hash值太集中,或者元素不是很多,第一个元素往往都是需要的最终元素
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                //第一个元素就是要找的元素,因为hash值和key都相等,直接返回
                return first;
            if ((e = first.next) != null) {//如果第一元素不是要找到的元,则判断其next指向是否还有元素
                //有元素,判断其是否是TreeNode
                if (first instanceof TreeNode)
                    //是TreeNode则根据TreeNode的方式获取数据
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {//是Node单向链表,则通过next循环匹配,找到就退出,否则直到匹配完最后一个元素才退出
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        //没有找到则返回null
        return null;
    }
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,204评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,091评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,548评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,657评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,689评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,554评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,302评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,216评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,661评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,851评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,977评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,697评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,306评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,898评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,019评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,138评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,927评论 2 355

推荐阅读更多精彩内容