在转行数据分析的过程中,相信很多小伙伴都有这样的困惑:
面对五花八门的学习资料,不知道从哪儿入手
不了解学习到什么程度才可以去找工作
没有数据分析项目经验,害怕找工作被拒
为了让小伙伴们在转行过程中少走一些弯路,今天我们就来聊聊0基础入职数据分析究竟要怎么找工作。
本期我们将分别从学习方式、学习内容、面试准备这三项内容展开介绍,那么废话不多说,我们开始进入正题。
一、学习方式
橙子将学习方式划分为2类:①裸辞学习 ②在职学习
一般情况我们不建议裸辞,因为裸辞的小伙伴在求职的时候会比较被动:
►心态问题 ,如果长时间找不到工作,要承受很大的心理压力;
► HR压制 ,这里指HR会压制你的薪资,比如面试官会问,什么时间能到岗,你会很急切的回复说,“明天就可以!”相对应的,你的薪资也是“再降点也可以!”。
所以,如果目前的工作不会让你3秒钟就原地爆炸的话,真的不要裸辞!
二、学习内容
从初级数据分析师招聘要求的必须技能来看,主要包括理论知识和工具实践两部分内容。
理论部分
► 统计学:为什么将统计学放在第一位呢?因为统计学是数据分析的基石,而且统计分析可以解决日常大部分的分析需求。统计学这部分内容需要学习描述统计、假设检验、贝叶斯、概率、分布、抽样、线性回归、时间序列等内容。
►数据分析方法论:这里要学习一些数据分析常用到分析方法,如趋势分析法、对比分析法、多维分解法、用户细查、漏斗分析、留存分析、AB测试法、4P理论、PESTEL理论、SWOT分析、5W2H理论、逻辑树理论、用户使用行为理论、AARRR模型等。
工具部分
►Excel:它是最基础的数据分析工具。在学习的Excel的时候需要重点掌握:常用函数的使用、快捷键操作、基础图表制作、数据透视表、Vlookup等。另外Excel还可以导入一些模板来使用,典型的包括数据分析模块、做假设检验经常用到;规划求解,做线性规划和决策等问题非常有效。
►SQL:它是数据分析的核心技能,SQL要重点学习Select,聚合函数、以及条件查询(Where、Group by、Order by等)
►PPT:用来和业务部门交流需求,展示分析结果。
►Python:主要学习Numpy、Pandas、Matplotlib、Seaborn等内容。Python 的底层是用 C 语言写的,很多标准库和第三方库也都是用 C 写的,在处理数据时候运行速度非常快。
这里需要注意的是不同公司对工具的要求也不同,例如有些公司要求会使用R语言、SPSS等,具体学哪一个工具可以参照JD要求,其中Excel、SQL和PPT是必备的基础技能工具。
三、求职面试
这部分我们先来解答一下文章开头提到的问题“学习到什么程度可以去找工作”
其实这个问题要根据面试公司的岗位技能要求来确定,如果是面试初级的数据运营,只要具备基础的数据分析技能就可以尝试去找工作了。如果是面试数据分析师,要求则会更高一些。
01、技能掌握好之后,要根据自己的目标城市、个人爱好、专业优势等因素确定目标行业。
数据分析是一个行业特征很明显的职业,如果你说自己想进入“互联网”企业,那可能说明你还没有想清楚自己到底要干什么。
因为互联网的存在是为了解决某个行业的问题(互联网+企业),比如滴滴、高德地图是为了解决出行交通行业问题(互联网+交通出行),比如美团饿了么解决的是餐饮生活类问题(互联网+餐饮),比如vipkid是为了解决少儿英语学习问题(互联网+教育),蚂蚁金服解决的是金融行业问题(互联网+金融)
这些行业都需要数据分析师,每个行业的业务知识也不一样。所以只有确定了行业,才能深入研究这个行业究竟是什么,对症下药,这样转行的成功率会更大。
02、行业确定后,接下来要明确目标公司,这里需要注意的是不同发展阶段的企业在数据使用的深度上是不同的。
沉睡型的企业,基本就是用Excel做一些基础统计和数据整理,做数据分析的人可能也是兼职,就是我们俗称的“表哥表姐”
在起步阶段,企业已经开始产生用数据报表的习惯,工具还是以Excel为主,数据库为辅,这个阶段的企业已经有少量的专职人员来维护数据库了。
发展型的企业,数据应用深度逐渐转向了业务,企业开始用数据规范工作,使用的工具变成了以数据库和专业的分析工具为主,并且企业会有专业的团队来负责数据工作。
成熟的企业特点更加鲜明,企业有成熟的基于业务场景的数据产品,数据类产品或服务是业务运营的核心组成部分。这时候企业运用的工具往往是数据平台或成熟的数据组件。
所以不同类型或者不同发展阶段的的企业对于数据的资源储备是有极大差异的,对数据人才的要求也不尽相同。
03、掌握了技能,明确好目标公司,然后就可以准备投递简历了。
这里建议小伙伴先跨过目标公司去海投,不断的积累面试经验。觉得自己OK了,再去投递目标公司的岗位。
在面试过程中,其实大可不必担心没有项目经验这个问题,既然改变不了这个事实,那我们可以另辟蹊径,拿自己的技能取胜,这个技能其实就是“数据分析报告”。面试时提前准备好数据报告,能让自己更好的把握面试节奏。
04、最后,给自己做一个职业规划,了解不同层级的数据分析师要掌握什么技能,想清楚自己未来的目标岗位,不断的去学习和提升自己,再一步步朝着目标迈进。