在Android中,如果想要在子线程里进行UI操作,就需要借助Android的异步消息处理机制。为了更加方便在子线程中更新UI元素,Android从1.5版本开始引入了一个AsyncTask类,使用它就可以非常灵活方便的从子线程切换到UI线程。
AsyncTask很早就出现在Android的API里了,所以我相信大多数朋友对它的用法都已经非常熟悉。不过今天我还是准备从AsyncTask的基本用法开始讲起,然后我们再来一起分析下AsyncTask源码,看看它是如何实现的。
AsyncTsk的基本用法
首先AsyncTask是一个抽象类,所以如果我们想使用它,就必须要创建一个子类去继承它。在继承时我们可以为AsyncTask类指定三个泛型参数:
- Params
在执行AsyncTask时需要传入的参数,可用于在后台任务中使用。 - Progress
后台任务执行时,如果需要在界面上显示当前的进度,则使用这里指定的泛型作为进度单位。 - Result
当任务执行完毕后,如果需要对结果进行返回,则是以这里指定的泛型作为返回值类型。
因此,一个最简单的自定义AsyncTask就可以写成如下方式:
class DownloadTask extends AsyncTask<Void,Integer,Boolean>{
......
}
这里我们把AsyncTask的第一个泛型参数指定为Void,表示在执行AsyncTask的时候不需要传入参数给后台任务。第二个泛型参数指定为Integer,表示使用整型数据来作为进度显示单位。第三个泛型参数指定为Boolean,则表示使用布尔型数据来反馈执行结果。
当然,目前我们自定义的DownloadTask还是一个空任务,并不能进行任何实际的操作,我们还需要去重写AsyncTask中的几个方法才能完成对任务的定制。经常需要去重写的方法有以下四个:
- onPreExecute()
这个方法会在后台任务开始执行之间调用,用于进行一些界面上的初始化操作,比如显示一个进度条对话框等。
- doInBackground(Params...)
这个方法中的所有代码都会在子线程中运行,我们应该在这里去处理所有的耗时任务。任务一旦完成就可以通过return语句来将任务的执行结果进行返回,如果AsyncTask的第三个泛型参数指定的是Void,就可以不返回任务执行结果。注意,在这个方法中是不可以进行UI操作的,如果需要更新UI元素,比如说反馈当前任务的执行进度,可以调用publishProgress(Progress...)方法来完成。
- onProgressUpdate(Progress...)
当在后台任务中调用了publishProgress(Progress...)方法后,这个方法就很快会被调用,方法中携带的参数就是在后台任务中传递过来的。在这个方法中可以对UI进行操作,利用参数中的数值就可以对界面元素进行相应的更新。
- onPostExecute(Result)
当后台任务执行完毕并通过return语句进行返回时,这个方法就很快会被调用。返回的数据会作为参数传递到此方法中,可以利用返回的数据来进行一些UI操作,比如说提醒任务执行的结果,以及关闭掉进度条对话框等。
因此,一个比较完整的自定义AsyncTask就可以写成如下方式:
class DownloadTask extends AsyncTask<Void, Integer, Boolean> {
@Override
protected void onPreExecute() {
progressDialog.show();
}
@Override
protected Boolean doInBackground(Void... params) {
try {
while (true) {
int downloadPercent = doDownload();
publishProgress(downloadPercent);
if (downloadPercent >= 100) {
break;
}
}
} catch (Exception e) {
return false;
}
return true;
}
@Override
protected void onProgressUpdate(Integer... values) {
progressDialog.setMessage("当前下载进度:" + values[0] + "%");
}
@Override
protected void onPostExecute(Boolean result) {
progressDialog.dismiss();
if (result) {
Toast.makeText(context, "下载成功", Toast.LENGTH_SHORT).show();
} else {
Toast.makeText(context, "下载失败", Toast.LENGTH_SHORT).show();
}
}
}
这里我们模拟了一个下载任务,在doInBackground()方法中去执行具体的下载逻辑,在onProgressUpdate()方法中显示当前的下载进度,在onPostExecute()方法中来提示任务的执行结果。如果想要启动这个任务,只需要简单地调用以下代码即可:
new DownloadTask().execute();
注意:
- 必须在UI线程中创建和调用AsyncTask实例。
- 永远不应该调用在AsyncTask类中重写的方法。他们被自动调用
- AsyncTask只能被调用一次。再次执行它会抛出异常
以上就是AsyncTask的基本用法,怎么样,是不是感觉在子线程和UI线程之间进行切换变得灵活了很多?我们并不需求去考虑什么异步消息处理机制,也不需要专门使用一个Handler来发送和接收消息,只需要调用一下publishProgress()方法就可以轻松地从子线程切换到UI线程了。
分析AsyncTask的源码
虽然AsyncTask这么简单好用,但你知道它是怎样实现的吗?那么接下来,我们就来分析一下AsyncTask的源码,对它的实现原理一探究竟。注意这里我选用的是Android 4.0的源码,如果你查看的是其它版本的源码,可能会有一些出入。
从之前DownloadTask的代码就可以看出,在启动某一个任务之前,要先new出它的实例,因此,我们就先来看一看AsyncTask构造函数中的源码,如下所示:
public AsyncTask() {
mWorker = new WorkerRunnable<Params, Result>() {
public Result call() throws Exception {
mTaskInvoked.set(true);
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
return postResult(doInBackground(mParams));
}
};
mFuture = new FutureTask<Result>(mWorker) {
@Override
protected void done() {
try {
final Result result = get();
postResultIfNotInvoked(result);
} catch (InterruptedException e) {
android.util.Log.w(LOG_TAG, e);
} catch (ExecutionException e) {
throw new RuntimeException("An error occured while executing doInBackground()",
e.getCause());
} catch (CancellationException e) {
postResultIfNotInvoked(null);
} catch (Throwable t) {
throw new RuntimeException("An error occured while executing "
+ "doInBackground()", t);
}
}
};
}
这段代码虽然看起来有点长,但实际上并没有任何具体的逻辑会得到执行,只是初始化了两个变量,mWorker和mFuture,并在初始化mFuture的时候将mWorker作为参数传入。mWorker是一个Callable对象,mFuture是一个FutureTask对象,这两个变量会暂时保存在内存中,稍后才会用到它们。
接着如果想要启动某一个任务,就需要调用该任务的execute()方法,因此现在我们来看一看execute()方法的源码,如下所示:
public final AsyncTask<Params, Progress, Result> execute(Params... params) {
return executeOnExecutor(sDefaultExecutor, params);
}
简单的有点过分了,只有一行代码,仅是调用了executeOnExecutor()方法,那么具体的逻辑就应该写在这个方法里了,快跟进去瞧一瞧:
public final AsyncTask<Params, Progress, Result> executeOnExecutor(Executor exec,
Params... params) {
if (mStatus != Status.PENDING) {
switch (mStatus) {
case RUNNING:
throw new IllegalStateException("Cannot execute task:"
+ " the task is already running.");
case FINISHED:
throw new IllegalStateException("Cannot execute task:"
+ " the task has already been executed "
+ "(a task can be executed only once)");
}
}
mStatus = Status.RUNNING;
onPreExecute();
mWorker.mParams = params;
exec.execute(mFuture);
return this;
}
果然,这里的代码看上去才正常点。可以看到,在第15行调用了onPreExecute()方法,因此证明了onPreExecute()方法会第一个得到执行。可是接下来的代码就看不明白了,怎么没见到哪里有调用doInBackground()方法呢?别着急,慢慢找总会找到的,我们看到,在第17行调用了Executor的execute()方法,并将前面初始化的mFuture对象传了进去,那么这个Executor对象又是什么呢?查看上面的execute()方法,原来是传入了一个sDefaultExecutor变量,接着找一下这个sDefaultExecutor变量是在哪里定义的,源码如下所示:
public static final Executor SERIAL_EXECUTOR = new SerialExecutor();
……
private static volatile Executor sDefaultExecutor = SERIAL_EXECUTOR;
可以看到,这里先new出了一个SERIAL_EXECUTOR常量,然后将sDefaultExecutor的值赋值为这个常量,也就是说明,刚才在executeOnExecutor()方法中调用的execute()方法,其实也就是调用的SerialExecutor类中的execute()方法。那么我们自然要去看看SerialExecutor的源码了,如下所示:
private static class SerialExecutor implements Executor {
final ArrayDeque<Runnable> mTasks = new ArrayDeque<Runnable>();
Runnable mActive;
public synchronized void execute(final Runnable r) {
mTasks.offer(new Runnable() {
public void run() {
try {
r.run();
} finally {
scheduleNext();
}
}
});
if (mActive == null) {
scheduleNext();
}
}
protected synchronized void scheduleNext() {
if ((mActive = mTasks.poll()) != null) {
THREAD_POOL_EXECUTOR.execute(mActive);
}
}
}
SerialExecutor类中也有一个execute()方法,这个方法里的所有逻辑就是在子线程中执行的了,注意这个方法有一个Runnable参数,那么目前这个参数的值是什么呢?当然就是mFuture对象了,也就是说在第9行我们要调用的是FutureTask类的run()方法,而在这个方法里又会去调用Sync内部类的innerRun()方法,因此我们直接来看innerRun()方法的源码:
void innerRun() {
if (!compareAndSetState(READY, RUNNING))
return;
runner = Thread.currentThread();
if (getState() == RUNNING) { // recheck after setting thread
V result;
try {
result = callable.call();
} catch (Throwable ex) {
setException(ex);
return;
}
set(result);
} else {
releaseShared(0); // cancel
}
}
可以看到,在第8行调用了callable的call()方法,那么这个callable对象是什么呢?其实就是在初始化mFuture对象时传入的mWorker对象了,此时调用的call()方法,也就是一开始在AsyncTask的构造函数中指定的,我们把它单独拿出来看一下,代码如下所示:
public Result call() throws Exception {
mTaskInvoked.set(true);
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
return postResult(doInBackground(mParams));
}
在postResult()方法的参数里面,我们终于找到了doInBackground()方法的调用处,虽然经过了很多周转,但目前的代码仍然是运行在子线程当中的,所以这也就是为什么我们可以在doInBackground()方法中去处理耗时的逻辑。接着将doInBackground()方法返回的结果传递给了postResult()方法,这个方法的源码如下所示:
private Result postResult(Result result) {
Message message = sHandler.obtainMessage(MESSAGE_POST_RESULT,
new AsyncTaskResult<Result>(this, result));
message.sendToTarget();
return result;
}
如果你已经熟悉了异步消息处理机制,这段代码对你来说一定非常简单吧。这里使用sHandler对象发出了一条消息,消息中携带了MESSAGE_POST_RESULT常量和一个表示任务执行结果的AsyncTaskResult对象。这个sHandler对象是InternalHandler类的一个实例,那么稍后这条消息肯定会在InternalHandler的handleMessage()方法中被处理。InternalHandler的源码如下所示:
private static class InternalHandler extends Handler {
@SuppressWarnings({"unchecked", "RawUseOfParameterizedType"})
@Override
public void handleMessage(Message msg) {
AsyncTaskResult result = (AsyncTaskResult) msg.obj;
switch (msg.what) {
case MESSAGE_POST_RESULT:
// There is only one result
result.mTask.finish(result.mData[0]);
break;
case MESSAGE_POST_PROGRESS:
result.mTask.onProgressUpdate(result.mData);
break;
}
}
}
这里对消息的类型进行了判断,如果这是一条MESSAGE_POST_RESULT消息,就会去执行finish()方法,如果这是一条MESSAGE_POST_PROGRESS消息,就会去执行onProgressUpdate()方法。那么finish()方法的源码如下所示:
private void finish(Result result) {
if (isCancelled()) {
onCancelled(result);
} else {
onPostExecute(result);
}
mStatus = Status.FINISHED;
}
可以看到,如果当前任务被取消掉了,就会调用onCancelled()方法,如果没有被取消,则调用onPostExecute()方法,这样当前任务的执行就全部结束了。
我们注意到,在刚才InternalHandler的handleMessage()方法里,还有一种MESSAGE_POST_PROGRESS的消息类型,这种消息是用于当前进度的,调用的正是onProgressUpdate()方法,那么什么时候才会发出这样一条消息呢?相信你已经猜到了,查看publishProgress()方法的源码,如下所示:
protected final void publishProgress(Progress... values) {
if (!isCancelled()) {
sHandler.obtainMessage(MESSAGE_POST_PROGRESS,
new AsyncTaskResult<Progress>(this, values)).sendToTarget();
}
}
非常清晰了吧!正因如此,在doInBackground()方法中调用publishProgress()方法才可以从子线程切换到UI线程,从而完成对UI元素的更新操作。其实也没有什么神秘的,因为说到底,AsyncTask也是使用的异步消息处理机制,只是做了非常好的封装而已。
各版本AsyncTask之间的差异
各版本AsyncTask之间的差异主要集中在线程池的使用这一块。主要的分界点有2个,分为3个阶段。第一阶段是3.0以前的版本,第二是3.0-4.4版本的阶段,第三个是4.4版本以后的阶段。那我们一个一个阶段来看。
3.0之前版本中AsyncTask
这里使用2.3版本的AsyncTask源代码:
private static final int CORE_POOL_SIZE = 5;
private static final int MAXIMUM_POOL_SIZE = 128;
private static final int KEEP_ALIVE = 1;
private static final BlockingQueue<Runnable> sWorkQueue =
new LinkedBlockingQueue<Runnable>(10);
private static final ThreadFactory sThreadFactory = new ThreadFactory() {
private final AtomicInteger mCount = new AtomicInteger(1);
public Thread newThread(Runnable r) {
return new Thread(r, "AsyncTask #" + mCount.getAndIncrement());
}
};
private static final ThreadPoolExecutor sExecutor = new ThreadPoolExecutor(CORE_POOL_SIZE,
MAXIMUM_POOL_SIZE, KEEP_ALIVE, TimeUnit.SECONDS, sWorkQueue, sThreadFactory);
在3.0版本以前AsyncTask的线程只有1个线程池,核心线程数为5,最大线程数为128,任务队列容量为10。
也就是说当线程池中的线程数量没到5个,那么有新的任务会直接启动一个核心线程来执行任务,如果线程池中的线程数量达到了5个,然后任务会被插入到任务队列中等待执行,要是任务队列也满了,就会判断线程池中的数量是否已经达到最大线程数128,如果没有达到就会立刻启动一个非核心线程来执行任务。如果线程数量已经达到线程池规定的最大值,那么就会拒绝执行该任务。也就是说该线程池最多能同时接纳138个任务,其中有128个任务可以同时执行。而且该版本只有一个execute(Params... params) 方法,说明不能自定义线程池来执行任务。
3.0 - 4.4版本中AsyncTask
这里使用4.2版本的AsyncTask源代码:
private static final int CORE_POOL_SIZE = 5;
private static final int MAXIMUM_POOL_SIZE = 128;
private static final int KEEP_ALIVE = 1;
private static final ThreadFactory sThreadFactory = new ThreadFactory() {
private final AtomicInteger mCount = new AtomicInteger(1);
public Thread newThread(Runnable r) {
return new Thread(r, "AsyncTask #" + mCount.getAndIncrement());
}
};
private static final BlockingQueue<Runnable> sPoolWorkQueue =
new LinkedBlockingQueue<Runnable>(10);
/**
* An {@link Executor} that can be used to execute tasks in parallel.
*/
public static final Executor THREAD_POOL_EXECUTOR
= new ThreadPoolExecutor(CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE,
TimeUnit.SECONDS, sPoolWorkQueue, sThreadFactory);
//以下为新增部分
public static final Executor SERIAL_EXECUTOR = new SerialExecutor();
private static volatile Executor sDefaultExecutor = SERIAL_EXECUTOR;
private static class SerialExecutor implements Executor {
final ArrayDeque<Runnable> mTasks = new ArrayDeque<Runnable>();
Runnable mActive;
public synchronized void execute(final Runnable r) {
mTasks.offer(new Runnable() {
public void run() {
try {
r.run();
} finally {
scheduleNext();
}
}
});
if (mActive == null) {
scheduleNext();
}
}
protected synchronized void scheduleNext() {
if ((mActive = mTasks.poll()) != null) {
THREAD_POOL_EXECUTOR.execute(mActive);
}
}
}
public final AsyncTask<Params, Progress, Result> execute(Params... params) {
return executeOnExecutor(sDefaultExecutor, params);
}
public final AsyncTask<Params, Progress, Result> executeOnExecutor(Executor exec,
Params... params) {
if (mStatus != Status.PENDING) {
switch (mStatus) {
case RUNNING:
throw new IllegalStateException("Cannot execute task:"
+ " the task is already running.");
case FINISHED:
throw new IllegalStateException("Cannot execute task:"
+ " the task has already been executed "
+ "(a task can be executed only once)");
}
}
mStatus = Status.RUNNING;
onPreExecute();
mWorker.mParams = params;
exec.execute(mFuture);
return this;
}
这个版本的线程池与上个版本并没有什么不同,只是新增加了一个SerialExecutor,从代码中我们可以看到这是一个顺序执行任务的Executor,虽然最后任务还是交给了THREAD_POOL_EXECUTOR来执行,但是使用这个Executor可以保证任务时按先进先出的顺序来执行。同时新增加了executeOnExecutor(Executor exec,Params... params) 方法,这个方法被声明是public的并且接受一个Executor参数,说明我们可以自定义线程池或者使用SerialExecutor来执行任务。如果使用execute()方法的话,默认会使用SerialExecutor来执行任务。
4.4版本以后AsyncTask
这里使用4.4版本的AsyncTask源代码:
private static final int CPU_COUNT = Runtime.getRuntime().availableProcessors();
private static final int CORE_POOL_SIZE = CPU_COUNT + 1;
private static final int MAXIMUM_POOL_SIZE = CPU_COUNT * 2 + 1;
private static final int KEEP_ALIVE = 1;
private static final ThreadFactory sThreadFactory = new ThreadFactory() {
private final AtomicInteger mCount = new AtomicInteger(1);
public Thread newThread(Runnable r) {
return new Thread(r, "AsyncTask #" + mCount.getAndIncrement());
}
};
private static final BlockingQueue<Runnable> sPoolWorkQueue =
new LinkedBlockingQueue<Runnable>(128);
/**
* An {@link Executor} that can be used to execute tasks in parallel.
*/
public static final Executor THREAD_POOL_EXECUTOR
= new ThreadPoolExecutor(CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE,
TimeUnit.SECONDS, sPoolWorkQueue, sThreadFactory);
public static final Executor SERIAL_EXECUTOR = new SerialExecutor();
private static volatile Executor sDefaultExecutor = SERIAL_EXECUTOR;
private static class SerialExecutor implements Executor {
final ArrayDeque<Runnable> mTasks = new ArrayDeque<Runnable>();
Runnable mActive;
public synchronized void execute(final Runnable r) {
mTasks.offer(new Runnable() {
public void run() {
try {
r.run();
} finally {
scheduleNext();
}
}
});
if (mActive == null) {
scheduleNext();
}
}
protected synchronized void scheduleNext() {
if ((mActive = mTasks.poll()) != null) {
THREAD_POOL_EXECUTOR.execute(mActive);
}
}
}
4.4版本以后的线程池数量改为了动态的,以双核心为例,先获取CPU的核心数为2,线程池的核心线程为3,最大线程数为5,而阻塞队列的容量变为了128。为什么会有这样的改动?可能谷歌公司觉得开启的线程数过多会影响效率吧。而阻塞队列从容量为10变为了128是一个很有意思的事情。在4.4以前的版本,如果已经达到了线程池的核心线程数5,切阻塞队列也达到了10,再有任务加入,就会启动新的非核心线程,也就是说只要同时又16个任务进入就会开启非核心线程。而现在需要132(3+128+1)个任务加入才会开启非核心线程。也就是说要开启新的线程的成本更大了。
好了,以上就是AsyncTask的详细介绍