Hive的分区和分桶分区

对于大型数据处理系统而言,数据分区的功能是非常重要的。因为Hive通常要对数据进行全盘扫描,才能满足查询条件(我们暂时先忽略索引的功能)。

以Hive管理大型网站的浏览日志为例。如果日志数据表不采用分区设计,那么就单日网站流量分析这样的需求而言,Hive就必然要通过遍历全量日志来完成查询。以一年日志为全量,单日查询的数据利用率将不到1%,这样的设计基本上将查询时间浪费在了数据加载中。

分区的优势在于利用维度分割数据。在使用分区维度查询时,Hive只需要加载数据,极大缩短数据加载时间。上述案例中,假使我们以日期为维度设计日志数据表的分区,对于自选日期范围的查询需求,Hive就只需加载日期范围所对应的分区数据。

由于HDFS被设计用于存储大型数据文件而非海量碎片文件,理想的分区方案不应该导致过多的分区文件,并且每个目录下的文件尽量超过HDFS块大小的若干倍。按天级时间粒度进行分区就是一个好的分区策略,随着时间的推移,分区数量增长均匀可控。此外常有的分区策略还有地域,语言种类等等。设计分区的时候,还有一个误区需要避免。关于分区维度的选择,我们应该尽量选取那些有限且少量的数值集作为分区,例如国家、省份就是一个良好的分区,而城市就可能不适合进行分区。

注意:分区是数据表中的一个列名,但是这个列并不占有表的实际存储空间。它作为一个虚拟列而存在。

分桶

分区提供了一种整理数据和优化查询的便利方式。不过,并非所有数据集都可形成合理的分区,特别是在需要合理划分数据、防止倾斜时。分桶是将数据分解管理的另一技术。

假设我们有一张地域姓名表并按城市分区。那么很有可能,北京分区的人数会远远大于其他分区,该分区的数据I/O吞吐效率将成为查询的瓶颈。如果我们对表中的姓名做分桶,将姓名按哈希值分发到桶中,每个桶将分配到大致均匀的人数。

分桶解决的是数据倾斜的问题。因为桶的数量固定,所以没有数据波动。桶对于数据抽样再适合不过,同时也有利于高效的map-side Join。

分桶与分区的关系

分区和分桶都可以单独用于表;

分区可以是多级的;

分区和分桶可以嵌套使用,但是分区必须在分桶前面。

#

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,539评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,594评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,871评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,963评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,984评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,763评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,468评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,357评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,850评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,002评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,144评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,823评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,483评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,026评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,150评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,415评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,092评论 2 355

推荐阅读更多精彩内容