RNA-Seq分析|RPKM, FPKM, TPM, 傻傻分不清楚?

在RNA-Seq的分析中,对基因或转录本的read counts数目进行标准化(normalization)是一个极其重要的步骤,因为落在一个基因区域内的read counts数目取决于基因长度和测序深度。

很容易理解,一个基因越长,测序深度越高,落在其内部的read counts数目就会相对越多。

当我们进行基因差异表达的分析时,往往是在多个样本中比较不同基因的表达量,如果不进行数据标准化,比较结果是没有意义的

因此,我们需要标准化的两个关键因素就是基因长度和测序深度,常常用RPKM (Reads Per Kilobase Million), FPKM (Fragments Per Kilobase Million) 和 TPM (Transcripts Per Million)作为标准化数值。

那么,这三者计算原理是什么,有何区别呢?

下面做详细介绍

为了更清楚的展示计算过程,我们用三个样本的4个基因的read counts矩阵做例子(来源于YouTube)。如表1:


image.png

大家可以清楚地看到,样本3的4个基因read counts数目明显多于其他两个样本,说明其测序深度较高,基因B的长度的基因A的两倍,也使得其read counts在三个样本中都高于A。

接下来我们要做就是对这个矩阵进行标准化,分别计算RPKM, FPKM和TPM, 请睁大你的眼睛(为了使数值可读性更好,下面的计算中我们用10代表million)。

我们先来说说RPKM怎么算。

第一步先将测序深度标准化,计算方法很简单,先分别计算出每个样本的总reads数(这里以10为单位),然后将表中数据分别除以总reads数即可,这样就得到了reads per million. 如下表2:


表2.jpg

第二步即是基因长度的标准化了。将表2的read per million直接除以基因长度即可,如表3:


表3.jpg

到这里,我们即得到了传说中的RPKM。

FPKM和RPKM的定义是相同的,唯一的区别是FPKM适用于双端测序文库,而RPKM适用于单端测序文库。FPKM会将配对比对到一个片段(fragment)上的两个reads计算一次,接下来的计算过程跟RPKM一样。

下面,终于轮到TPM登场了。虽然同样是标准化测序深度和基因长度,TPM的不同在于它的处理顺序是不同的。即先考虑基因长度,再是测序深度。我们仍以表1的那个例子来说明TPM是计算过程。

第一步直接除以基因长度,得到reads per kilobase,如表4:


表4.jpg

第二步标准化测序深度时,总的reads数要用第一步中除过基因长度的数值。即第一样本除以15,第二个样本除以20.25,第三个样本除以45.1 (别忘了我们的单位是10哦)。表5就是你们想要的TPM了。


表5.jpg

下面,是考验你们数学功底的时候了,有没有看出来TPM分分钟完虐FPKM/RPKM?其实,只要我们在表3和表5下面多加一行你就能很轻松地看到区别了。


表6.jpg

表7.jpg

我们看到每个样本的TPM的总和是相同的,这就意味着****TPM****数值能体现出比对上某个基因的****reads****的比例,使得该数值可以直接进行样本间的比较。

看到这里,相信大家已经完全理解了RNA-Seq数据标准化的流程了。

虽然现在有很多计算差异表达的软件是直接支持****read counts****作为输入,并且自已完成标准化过程,如DESeq2,但作为生信人,知道这些中间量的计算过程还是很有必要的。
转自http://www.360doc.com/content/18/0112/02/50153987_721216719.shtml

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350