![240](https://upload.jianshu.io/users/upload_avatars/22097296/9ef3a58a-1158-4ca2-9cf0-24d2b0f2e2c9.jpg?imageMogr2/auto-orient/strip|imageView2/1/w/240/h/240)
论文标题:Direct Preference Optimization: Your Language Model is Secretly a R...
论文标题:Propagation Tree Is Not Deep: Adaptive Graph Contrastive Learning A...
一、概述 大语言模型(LLMs)在预训练的过程中通常会捕捉数据的特征,而这些训练数据通常既包含高质量的也包含低质量的,因此模型有时会产生不被期望...
论文标题:LoRA: Low-Rank Adaptation of Large Language Models论文链接:https://arxi...
论文标题:Megatron-LM: Training Multi-Billion Parameter Language Models Using...
论文标题:Tree of Thoughts: Deliberate Problem Solving with Large Language Mo...
论文标题:LIMA: Less Is More for Alignment论文链接:https://arxiv.org/abs/2305.112...
论文标题:Self-Consistency Improves Chain of Thought Reasoning in Language Mo...
论文标题:GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism论文链接:https...