1.判别下列多项式有无重因式: 解: 有重因式 没有重因式 2.求值使有重根 解: 有重根与有公共根 (1)若,则 此时有重根 (2)若,则 有重根 即有重根 此时 即 解得...
IP属地:山西
1.判别下列多项式有无重因式: 解: 有重因式 没有重因式 2.求值使有重根 解: 有重根与有公共根 (1)若,则 此时有重根 (2)若,则 有重根 即有重根 此时 即 解得...
1.证明:若,且为与的一个组合,则是与的一个最大公因式 证: 是与的一个公因式 若是与的一个公因式 则可整除与的任一组合 是与的一个最大公因式 2.证明:(首项系数为1) 证...
多项式题选(1) 1.适合什么条件时,有 解: 使 设,代入得 或 2.求除的商与余式: 3.把表成的方幂和,即表成 的形式: 解: 注: 1.设表成, 显然为被除得的余数...
不定式极限 两个无穷小量或无穷大量之比的极限统称为不定式极限 型不定式极限 定理:若函数满足: 1. 2.在点的某空心邻域上两者都可导,且 3.(可为实数也可为或) 则 证明...
柯西中值定理 柯西中值定理 定理:设函数和满足: 1.在上都连续 2.在上都可导 3.和不同时为零 4. 则,使得 证明: 作辅助函数 显然在上满足罗尔定理条件 故,使得 几...
单调函数 单调性判断 定理:设在区间上可导,则在上递增(减)的充要条件是 证明: 必要性 若为增函数 则,当时有 令,即得 充分性 若在区间上恒有 则,不妨设 应用Lagra...